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Abstract

The past decade has seen an explosion in the amount of information that is collected,

analyzed, explored, or simply stored in the hope that one day it can be used. The rate at

which we can collect and store data is rapidly outstripping the provision of tools for the

effective analysis and exploration of such data. This thesis is concerned with the provision

of models and methods for such tools.

Relational information visualization is concerned with the presentation of abstract re-

lational data, in a visual form. The essential idea in relational information visualization is

that the user’s perceptual abilities are employed to understand and explore such informa-

tion. Visually, humans can perceive more patterns linking local features in the data.

Graph models are typically used to represent relational information, where the visual-

ization of such graphs is referred to as graph drawing. Existing models and methods for

graph drawing tend to effectively deal with only relatively small graphs (at most a hundred

nodes). This thesis is concerned with investigating efficient techniques for drawing large

graphs with thousands of nodes.

Efficiency in the production of the drawing is only one of the many related issues when

dealing with large graphs. Equally significant are the problems of screen space use, the

cognitive load on the user, and the time to render the picture. Further, the picture created

must be a measurably high quality. The central paradigm presented in this thesis marries a

solution to all these problems using a single graph model.

This thesis provides the models, measures and methods required to produce and evalu-

ate the drawing of large amounts of relational information. The effectiveness and efficiency

of the methods are evaluated with rigorous quality measures using data from application

domains.



C H A P T E R 1

Introduction

“...all life is only a set of pictures in the brain, among which there is no dif-

ference betwixt those born of real things and those born of inward dreamings,

and there is no cause to value one above the other.” - H.P. Lovecraft

1.1 Purpose

A byproduct of the explosive growth in the use of computing technology is that orga-

nizations are generating, gathering, and storing data at a rate which is doubling every

year [298]. The ability for a mid-sized organization to store terabytes of data is easily

within reach. The provision of massive storage technology is rapidly outstripping the pro-

vision of tools for the effective analysis and exploration of such voluminous data. Clearly

this data is of little value unless useful information and hence knowledge can be derived

from it.

Application domains which deal with such voluminous data include: geographic infor-

mation systems (see [220, 282]), geophysical data systems (see [46, 155, 205]), financial

analysis systems (see [278]), software development (see [37, 161, 211]), software reverse

engineering (see [199, 221, 238]), and software evolution (see [236, 246, 296]).

The amount of data makes the analysis task difficult. One approach to this problem is

to convert the data into pictures and models that can be graphically displayed. The intuition

behind the use of such graphics is that human beings are inherently skilled at understanding

data in visual forms.



1.1 Purpose 2

Figure 1.1: Credit Card Application Data Visualization. Reproduced by courtesy of Frank Suits
(IBM)

For example, Figure 1.1 shows the results obtained for a set of credit card applications.

The colour of the sphere is the credit limit for that card holder as determined by a software

analysis. A banker can analyze such data in this visual form to see patterns that may help

with marketing or risk analysis. For example, the vast majority of those with a long work

history have a large credit limit, regardless of current debt ratio.

It is becoming increasingly apparent that more powerful graphical information explo-

ration tools are required as the amount and complexity of data that these tools are expected

to handle steadily increases. Large scale information visualization is the process of graph-

ically representing large amounts of abstract information on screen, which a user can in-

terpret in ways not possible from the raw data alone. This thesis is concerned with the

graphical display of large amounts of information.

In some application domains the information space can be modeled in terms of its

atomic entities and their interrelationships, that is, as relational information. Techniques

which produce graphical representations or abstract views of such relational information

now form a substantive component of many graphical software systems. Examples of do-
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Figure 1.2: Dependencies between modifications to a large program. Reproduced by courtesy of
Stephen North (AT&T), from [133]

mains which include the use of graphical relational information display include: software

understanding (see [3, 12, 42, 198, 211, 242]), program comprehension (see [219, 101,

165, 174, 176, 263]), software visualization (see [11, 12, 37, 24, 143, 227, 260]), and web

site maintenance (see [135, 168, 200, 203, 296, 297]). This thesis is concerned with the

visualization of large amounts of relational information from such domains.

Relational information is typically modeled in terms of a graph ; the atomic entities

of the domain form the set of nodes and the interrelationships form the set of edges .

An example of a picture of relational information is shown in Figure 1.2, where the edges

represent dependencies between modifications to a large software system. Note that in this

picture the natural clusters of the software modules are apparent.

In contrast, consider the relational information drawn in Figure 1.3, which aims to

show the Internet infrastructure in South Korea. In this drawing, the relationships (which

are crucial in understanding the actual infrastructure) are difficult to identify and follow.

The layout of this graph is of poor quality. The problem of creating a high quality picture
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Figure 1.3: Internet infrastructure in South Korea, NIC Korea

of a graph, is to assign a location for each node and a route for each edge, so that the

picture is easy to follow; this is the classical problem in Graph Drawing [60]. This thesis is

concerned with drawing large graphs, that is, graphs with thousands of nodes and edges.

A good visual representation of a graph can effectively convey information to the user

but a poor representation can confuse or worse, mislead [74, 229, 230, 289]. Graph draw-

ing aims to develop algorithms and methods that produce high quality pictures that are easy

to follow. Generally, there are four related problems when dealing with the visualization

of large graphs. A brief discussion of each problem follows.

1. Computation: Classical graph drawing algorithms and approaches tend to deal only

with relatively small graphs. This has resulted in the development of techniques which are

unable to scale when drawing larger graphs. The primary bottleneck is the large amount

of computational effort these methods require to layout even medium sized graphs. The

graph in Figure 1.4 is a simplified model of a small part of the Internet (28107 nodes and



1.1 Purpose 5

Figure 1.4: Artistic visualization of internet connectivity and geography, courtesy of Bell Labs

29664 edges). This drawing took 20 CPU hours on a 400 Mhz Pentium to layout. The time

complexity of the algorithm used to produce the layout in Figure 1.4 is , where n is

the number of nodes [69]. Even with expected increases in processor speed, one cannot

expect to use this algorithm for real time layout. Fast layout algorithms are required, even

for large graphs, as interactive applications require real-time response. The computational

efficiency of a graph drawing algorithm and the size of the graph to render are crucial fac-

tors for any practical technique.

2. Screen Space: The challenging problem of making fast algorithms is further com-

pounded by the need to make effective use of the screen space. Showing part of the entire

layout in detail or zooming out to fit the entire drawing are common techniques. There are

a variety of other visualization techniques which attempt to fit large amounts of relational

information onto a computer screen. Sophisticated interactive systems employ the recur-
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sive use of glyphs to elide parts of the drawing [289].

3. Cognitive Load: Related to the problem of the effective use of screen space is the

issue of load, in terms of cognition. Even if the problems of computational cost and screen

space can the solved, there is clearly a need to reduce the cognitive load placed on the user

caused by drawing too much extraneous information. When dealing with large amounts of

information, the overriding desire is to simplify the drawing to highlight the global struc-

tures while deemphasizing the irrelevant detail.

4. Rendering: Interactive drawing systems often draw each node and edge as a unique

element, underpinned by a query model which supports the interactive selection of nodes

and edges. As the graphs become large, it is difficult to maintain responsive realtime up-

dates if thousands to tens of thousands individual graphical elements must be redrawn each

time a large modification to the visualization occurs.

This thesis addresses the four problems of; computation, screen space, cognitive load,

and rendering.

In addition, this thesis is concerned with the quality of the pictures produced. It is im-

portant to remember Tufte’s assertion [278] that:

“...if a visualization isn’t worth a thousand words, the hell with it”

Thus along with the ability to quickly layout and concisely abstract the graphs, we require

hard measures to evaluate the drawings and the abstract representations produced.

1.2 Contributions of this Thesis

The goal of this thesis is to develop models, measures, and methods which enable good

visualizations of large amounts of relational data.

As such, the foremost contribution of this thesis is the establishment of the FADE visu-
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alization paradigm, that marries rapid graph drawing, geometric clustering, visual abstrac-

tion, and measurement based on a dimension free hierarchical compound graph model.

The specific contributions of this thesis are:

The introduction of computationally inexpensive methods to create the hierarchical

compound graph. The goal is to rapidly form a clustering of the graph that exhibits

relatively high cohesiveness and low coupling.

A suite of fast approximate force directed algorithms, based on this graph model,

to layout and display the natural clusters in a graph. These algorithms provide a

significant algorithmic improvement to the classical force directed graph drawing

algorithm for large graphs.

The notion of a visual précis based on this model. This notion admits a range of

abstract views of the underlying graph drawing, reducing both the visual weight and

the time to render the drawing. Such views provide a skeleton of the graph at various

levels of abstraction. Larger graphs can be represented more concisely, on a higher

level of abstraction, with fewer graphics on screen.

Quality measures of the model, the drawings, and précis from the model.

We have evaluated and validated this graph model and the FADE paradigm in two case

studies, each of which involves the visualization of large amounts of application domain

specific relational information. We use a prototype graph drawing system which imple-

ments the FADE algorithms based on the hierarchical compound graph model. The results

and subsequent discussion of these results are supporting contributions of this thesis. The

case studies are:

A Software Visualization case study, which presents graph drawings, visual précis,

aesthetic, and clustering results of large graphs extracted from a range of views of

different software systems.

A Matrix Market case study, which presents a comparative study of existing visual-

izations with FADE graph drawings and visual précis along with aesthetic and clus-

tering results.
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1.2.1 Publications

Some the ideas presented in this thesis have already been published in the following papers:

Aaron Quigley and Peter Eades 2000 [237]:

“FADE: Graph Drawing, Clustering, and Visual Abstraction” in Joe Marks ed.:

Proc. 8th Int. Symp. Graph Drawing, GD (20-23 Sep 2000; Williamsburg, USA);

Springer-Verlag, Lecture Notes in Computer Science, LNCS 1984:197-210 (ISBN:

3-540-41552-8).

Aaron Quigley, Margot Postema and Heinz Schmidt 2000 [238]:

“ReVis: Reverse Engineering by Clustering and Visual Object Classification”, in

Proc. Australian Software Engineering Conference, ASWEC2000 (28-29 April 2000;

Canberra, Australia); IEEE Press, Australian National University, pp. 119-125 (ISBN:0-

7695-0631-3).

Aaron Quigley and Peter Eades 1999 [236]:

“PROVEDA: A scheme for Progressive Visualization and Exploratory Data Analysis

of Clusters” in Proc. Software Visualization Workshop, SOFTVIS’99 (1-2 Dec 1999;

Sydney, Australia); University of Technology Sydney, pp. 67–74 (ISBN: 0-7259-

1081-X).

Aaron Quigley 1999 [233]:

“Automated Tool Support for a large scale diagramming Tool”, in Proc. 2nd Aus-

tralian Work. on Constructing Software Engineering Tools, AWCSET’99 (1st Octo-

ber 1999; Sydney, Australia); Macquarie University Sydney, pp. 55-58 (ISBN: 0 864

18 573 1).

Aaron J. Quigley [239]:

“Large Scale 3D Clustering and Abstraction” in Jesse Jin ed.: Proc. Pan-Sydney

Area Work. On Visual Information Processing, VIP2000, to appear (1-2 Dec; Syd-

ney, Australia).
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1.3 Summary

The rest of this thesis is arranged as follows:

Chapter 2 introduces the visualization and presentation background details for the

areas addressed in this thesis. Graph drawing, aesthetics, algorithms, and prior work

on large scale graph drawing and clustering are described.

Chapter 3 develops models, methods, and measures for clustering and visual abstrac-

tion used within the FADE paradigm. The use of a “hierarchical compound graph”

for graph clustering and quality measurement is presented. A geometric approach to

the creation of hierarchical compound graphs and the notion of “visual précis” are

described.

Chapter 4 describes the FADE paradigm and a suite of layout algorithms based on

the models and methods introduced in Chapter 3. The FADE suite of efficient lay-

out algorithms is derived from work in the domain of particle simulations which we

review. The FADE paradigm marries the drawing, clustering, and abstract represen-

tation of graphs into a “progressive cycle” of measurable improvement.

Chapter 5 presents a case study on Software Visualization. The aim is to present the

results of applying the layout algorithms, abstraction methods, and various measures

from the FADE paradigm to the drawings of “views” from graphs extracted from a

variety of software systems. The visualization of these views may help a reverse en-

gineer or software evolver identify structures and natural clusters within the drawing

of the system.

Chapter 6 presents a case study on Matrix Market Visualizations. We first aim to

compare FADE drawings to existing structure and cityplot visualizations. The second

aim is to present the results of applying the layout algorithms, abstraction methods,

and various measures from the FADE paradigm to the drawings of the structured,

semi-structured, and clustered matrices from a range of application domains. The

visualization of this matrix data allows analysts to identify patterns, structures, and

the natural clusters within these data sets.
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Chapter 7 completes this thesis by summarizing the main findings and suggesting

possible future research.

Appendix A gives a description of the pictures, videos, three dimensional models,

and graph data included on the CD-ROM accompanying this thesis.

Appendix B gives a description of the performance results, horizon measurements,

and clustering measurements from the case studies in Chapters 5 and Chapter 6 in-

cluded on the CD-ROM accompanying this thesis.
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Background

“Drawing is speaking to the eye; talking is painting to the ear.” - Joseph Jou-

bert

This thesis introduces the FADE paradigm where the goal is to provide fast layout al-

gorithms and efficient abstract representations for large graphs of thousands of nodes. The

definition of what constitutes a large graph varies considerably and has tended to evolve

at the same rate as computing power increases. Whereas papers describing large graphs

with 50 to 100 nodes in the early 80’s were not uncommon, it is now commonly accepted

that large graphs constitute thousands to tens of thousands of nodes. A related problem, is

the issue of “screen real estate”. Screen real estate is simply a way to describe the amount

of screen area a visualization system has, as with physical real estate it is a scarce and

expensive commodity that is not to be wasted.

In this Chapter we provide background details for relational information visualization

and graph drawing. Section 2.2 describes graph drawing and some common graph drawing

conventions. Several broadly accepted aesthetic criteria, for graph drawing, are described

in Section 2.2.2. Graph drawing algorithms are discussed in Section 2.2.3 with particu-

lar emphasis in Section 2.2.4 on the “force directed” class of algorithm on which the FADE

paradigm is based. Section 2.2.6 introduces the relevant background for clustering in graph

drawing. And finally, Section 2.2.7 reviews recent developments in multilevel graph draw-

ing methods.

We begin in Section 2.1 by introducing and reviewing visualization and specifically

relational information visualization. Next, in Section 2.1.3 we describe “visual abstraction”
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Figure 2.1: “Knowledge Nation” diagram from the Australian Labor Party [144]

and how it relates to large scale information visualization.

2.1 Visualization

Visualization is classically defined as the process of forming a mental image of some scene

as described [293]. However, since the advent of graphic workstations it has become syn-

onymous with the computational process of making data visible. With graphic workstations

now so ubiquitous in almost every aspect of day to day life, it is prosaic to try and motivate

interest in visualization by stating that images are a powerful way to show data.

We know visualization is important; what is more important to address is the question

of “readability”. Bad information visualizations are unfortunately all too common [89].

Examples include the widely scorned “meatballs and spaghetti” diagram [144] shown in

Figure 2.1 from the Australian Labor Party. An equally poor visualization of the interrela-

tionships between Korean Internet service providers is shown in Figure 1.3.

The central question of visualization is not, “do we use graphics to represent informa-

tion?”, rather it is “How do we create graphical presentations that are easy to understand

and which effectively and efficiently convey information?”.
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Figure 2.2: Visualization of a vector size measure of software [250].

2.1.1 Information Visualization

A number of visualization tools can be used to render a scene underpinned by a geometric

model in two or three dimensions, such as the POV-RAY scene rendering tool [175] . This

differs from information visualization which is the graphical presentation of abstract data.

Classical visualizations such as those found in medical texts are often based on the presen-

tation of a geometric model in some simplified form. With information visualization there

is no a priori geometric model; rather there is abstract data in the form of a symbolic model

of information. A symbolic model consists of a set of symbols which represent actual el-

ements of information. To allow the symbolic model to be visualized it can be assigned

a geometry. This geometry allows abstract concepts or measures to be visualized; see for

example the vector size measure of software in Figure 2.2. In this visualization, the square

regions represent modules of a software system. The height of each tower expresses the

size of individual components within each module. And the colour of a tower represents

its relative complexity.

An important issue in visualization is readability, that is, the degree to which something

is intelligible and can easily be understood. Readability is not a measure of artistic worth

or visual appeal. Historically, the question of readability has been confined to the field

of typography, in which issues of design, arrangement, style, and appearance of type are
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Figure 2.3: Alphabet of capital Roman letters with metaphorical ornaments by Daniel Hopfer

among the factors affecting the readability of text. Several readability measures for textual

documents are available. These measures quantify the structure of language use and its

relative level of complexity. These measures include the Flesch reading ease measure and

the Flesch-Kincaid grade level measure [90]. For the purposes of this thesis, the need to

communicate the meaning of the text is much more important than the need to convey a

sense of style, that is, we desire function over form.

An artistic example of where function has lost out to form can be seen in Figure 2.3.

This is a visually appealing type face with heavy embellishment but is not intended as a

book face. It cannot be said that this representation efficiently conveys the letters of the

English alphabet. Other, less ornate representations convey the information just as clearly

with much less “visual ink” [277, 278].

This thesis is concerned with the readability of diagrams used to graphically represent

relational information.

2.1.2 Relational Information Visualization

Relational information consists of elements of information and their interrelationships.

Typically this is modeled in terms of a graph of nodes and edges. For complex relational
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Figure 2.4: Class diagram of a web based software system, courtesy of Team 10 from the SENG205
Liquid Miro project [234]

information other graph models such as an “attributed graph” can be used. An attributed

graph is used to model information which contains more than one attribute per data ele-

ment. A relational information visualization is hence a simplified drawing that conveys the

relations, elements, and attributes of the underlying abstract symbolic model of the infor-

mation. An example of a relational information visualization is shown in Figure 2.4. This

represents a software design in terms of classes, their attributes, and interrelationships. The

shape of each element in this diagram indicates whether it is a client, server or form page

on the WWW, or whether the element is a software component in the classical sense. The

arcs indicate either software actions (such as getting the user name) or WWW actions (such

as redirecting a URL request).

2.1.3 Visual Abstraction

In data modeling, abstraction is the process of deriving the essential features of the data.

Abstraction, from the Latin abstrahere meaning “to withdraw”, indicates that an abstrac-
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tion process should remove unnecessary detail, to create the abstract form of the data which

typically highlights its essential features.

Visual abstraction is the process of creating an image which departs from representa-

tional accuracy, to some extent. Abstract artists, such as Pablo Picasso, often used abstrac-

tion to select and then exaggerate or simplify the forms suggested by the world around

them. The simplified drawings in medical illustrations, architectural sketches, and subway

maps all employ some degree of visual abstraction to create the simplification. For the

purposes of this thesis, an illustration is a picture or diagram that is used to clarify text.

A photorealistic computer visualization is the creation of an image that matches the

underlying model as closely as possible. The model must therefore be very detailed, with

lighting, reflection, transparency, and atmospheric conditions if it is to be displayed as

realistically as possible. Hence, the model used must be very detailed. Intuitively the visu-

alization should look like a photograph of the scene. Synthetic Photorealism is a large part

of the field of computer graphics and has numerous conferences, symposia, and dedicated

journals each year, such as SIGGRAPH [13, 59, 132, 170].

Abstract information typically has no photorealistic equivalent. For example, the vector

size measure visualization shown in Figure 2.2 is used in cost and effort estimation of

software projects [250]. The software modules, component sizes, and complexities have

been mapped to this artificial simplified cityscape geometry. Often the visualization of

abstract relational information is closer to the notion of illustration than photorealisim.

Examples of visual abstraction are common inmedical illustration, architectural sketch-

ing, and subway cartography (see Figure 2.6); although these visualizations do not attempt

to create photorealistic results. These visual abstractions are simplified drawings that con-

vey the information in the underlying geometric model of an object. As such, they have

been successfully used in a wide variety of application domains for hundreds of years.

In general, drawings of a model or information differ from photorealistic visualizations

in terms of context sensitivity, information filtering, information hiding, visual distortion,

elision, aesthetic appeal, and user control as described below.



2.1 Visualization 17

Context sensitivity

Medical illustrations of sections of the human brain typically show an overview with fine

levels of detail where they are needed. This detail-in-context view allows certain parts

of the visualization to be selected then emphasized (while other parts are deemphasized).

Often the “context” of the drawing can be at a different scale, so there is more space for

the detailed parts of the illustration.

In this thesis, we extend this notion of context to “visual précis” (drawings) that en-

compass both a local- and global-context for a variety of different viewing schemes, as

described in Section 3.11.

Filtering

Depending on the domain, filtering is often used before any visualization takes place. Ele-

ments of the model can be assigned an a priori importance or classification type, then only

elements above a certain threshold or in a particular category are considered. For example,

an architectural sketch of a new building may be based on a large underlying model that

contains information about ducting, lighting, and landscaping. One filtered view may just

include the basic structure of the building so the unnecessary details can be filtered out

before this data is considered.

This technique is often applied in relational information visualization; for example the

extraction of a minimum spanning tree of the data is a form of filtering [135, 201]. This

tree can then be used to show the main “stem” of the relational information. Filtering is

typically a pre-processing step that results in certain parts of the model being effectively

ignored. Unlike hiding which incorporates the data but doesn’t present it until called for.

Distortion

Distortion techniques include intelligent zoom [289], presentation emphasis [209, 257],

and fisheye views such as that shown in Figure 2.5 [157, 207, 208, 256, 264, 265]. How-

ever, as the models become large, the cognitive load on the user or computational effort

required to render such large amounts of graphical information becomes prohibitive. Hy-
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Figure 2.5: Fisheye view of a software call graph

perbolic views can also suffer from this cognitive and computational load [168]. Hybrid

hyperbolic viewers for tree exploration, based on filtering coupled with “elision” tech-

niques (see next section) have been developed by Munzner [200].

Hiding and Elision

Often in information visualization the amount of data in the model to be visualized is

large. Information hiding is the computational process of selectively ignoring or not yet

presenting parts of the information. Note, there is a clear distinction between filtering,

which is a pre-processing step and hiding, which is part of the visualization process. Hid-

ing techniques that can be directly applied to the drawings of large relational information

models include: pan-scan [48, 122, 219] (small window view of a large virtual canvas),

zooming [257, 280, 302], cluster based views, and fractal views [160].

Information hiding can be based on the notion of visual elision. Unlike filtering or

simple hiding, elision methods attempt to “hint” at information that is not fully displayed.

Numerous methods employ “glyphs” to convey information about the hidden part of the

model. A glyph is a visual symbol, such as a stylised figure, that imparts information

nonverbally. Glyphs can be stylised (coded) according to attributes such as colour, size,
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orientation, shape, or texture. Clearly, this hiding process reduces the detail in the visual-

ization. Less detail results in less graphical information to draw but this can also make it

harder for the user to interpret the information using the more approximate view. The trade

off can be simply stated as:

For large models, the simpler the visualization, the more approximate the view

of the model.

Hopefully, each glyph can effectively convey some useful meaning about the part of the

model that it represents. In most systems that employ elision, the elided parts can be

visualized in detail as they are needed.

If the model has an associated logical grouping then this often suggests the best choice

for what parts should be hidden and elided. A “hierarchical-clustering” provides an even

more sophisticated model for elision. Some applications use the natural clustering or hier-

archical structure of the data to decide what parts are to be hidden. For example, a model

of a car can be described in hierarchical terms with a part-of relationship. Then, instead

of drawing the wheels at the greatest level of detail (tread, colour, letters, nuts, and bolts) a

simple cylinder glyph can be used to suggest the wheel and the rest is hidden by elision.

Ware noted that elision in information visualization is analogous to the cognitive pro-

cess of “chunking” [289]. Chunking is the process of cognitively grouping simple concepts

into larger ones. Concepts, and hence chunks, are formed based on hypothesis testing.

Multiple hypotheses are held in memory and are continually refined and evaluated against

one another [55].

In this thesis, we integrate automatic and user directed elision techniques across mul-

tiple levels of detail. This integration allows effective visual information exploration and

hypothesis testing of large relational data sets; see Section 3.11 for more details on the use

and generation of “visual précis”.

Aesthetic appeal

The visual abstraction of the London underground (with inset), shown in Figure 2.6, repre-

sents thousands of man-hours of continual refinement over the past seventy years. There are
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Figure 2.6: Diagram of the UK London underground, with inset

thousands of details from a possible model of the underground system that have been ab-

stracted (filtered) away. The exact details of the topography are removed, although relative

orientations are mostly preserved. For example, the Embankment station is topographically

due north of Westminster station, not due east as the zoomed section of the map shown in

inset would suggest. The number of tracks on a given line is not shown. The relative size

of the stations is not shown; however the fact that a station is an interchange station often

indicates that it is a “larger” station.

Clearly, such a map is not very useful for navigating the streets of London or as an

aid in finding one station from another at street level. However, that is not the intended

purpose of this visualization. This fact is crucial in determining the usefulness of a given

visualization, that is, “What is its intended purpose?”. Here the map is intended to help

people plan journeys using the subway in order to get from station A to station B. In this

regard, it has proved a useful, popular, and enduring visualization that continues to help

millions of users daily.

As noted by Eades [70] and Strothotte [266] visualizations such as that in Figure 2.6

are very popular. These maps are readable and useful which typically stems from their
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aesthetic appeal rather than geographic correctness. The aesthetic appeal stems from the

simplicity and cleanliness of the drawing. Unnecessary detail has been removed to make

room for station icons and names. The lines are drawn with uniform thickness, mostly

at , or , corners are rounded, lines do not cross at a station name unless it is an

interchange station. Along with this, the colour coding avoids introducing visual noise by

placing opponent colours in parallel.

Twelve colours:

Red, Green, Yellow, Blue, Black, White,

Cyan, Gray, Orange, Brown and Purple

are generally recommended for coding information. This set consists of the eleven colour

names found to be most common in a cross-cultural anthropological study, with the ad-

dition of Cyan [289]. Additionally, this set is reasonably far apart in the colour space.

All twelve of these colours are used in the London underground map (white is used as a

negative space bounded between two thin black lines). The first six colours are easiest

to discern and in the underground map these colours are used to code the most important

lines, in terms of usage.

Relational information visualization is also guided by the aesthetics of the drawings

produced. In this thesis we use our case studies to address the intended use and aesthetic

appeal of graph drawing from various domains. Our goal is to demonstrate our FADE

paradigm is useful for the large scale drawing of graphs to show their structure. We also

aim to the use “visual précis” to show abstractions and improved aesthetic appeal, along

with the use of colour to show low level patterns in the data.

User Control

User control for information visualization, simply stated, is putting the user into the in-

formation visualization loop. Instead of simply entering the model, running the system

and viewing the result (as would happen with a photorealistic rendering, for example), the

user is interacting with the visualization system. Users can perform actions which include:

selecting parts of the data they want to see in more or less detail, performing searches,
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Figure 2.7: Making a picture from abstract relational information

moving parts of the data around, deleting, and editing. As such, information visualization

must be construed as a process of iterative observation and exploration of the information

available, that is, a form of exploratory data analysis.

2.2 Graph Drawing

Graph drawing is the process of making a picture from relational information. Research in

graph drawing has developed considerably since graphics workstations were introduced in

the 1980s [32, 60, 69, 97, 121, 147, 241, 248]. The problem is to develop a graph drawing

algorithm, which assigns a location for every node and a route for every edge. Once the

graph drawing algorithm has assigned a geometry, it is then possible to render a picture,

that is, a visualization of the graph. This process is illustrated in Figure 2.7. We now define

the basic combinatorial concepts that are required for this thesis.

An undirected graph , consists of a finite nonempty set of nodes and a

finite (possibly empty) set of edges. An edge is an unordered pair of nodes. An

edge is said to join or connect the nodes and where , . If

is an edge of , then the nodes and are called adjacent nodes or endpoints of , while

and are incident, as are and . The order of refers to the cardinality of the node set,

whereas the size of refers to the cardinality of the edge set. Therefore a graph has both an

order and size . A simple graph is one that contains no “loops” or “multiple edges”. A

loop is an edge that connects to itself. Multiple edges exist when two distinct

edges in connect the same pair of nodes in . An example of a graph drawing of a

undirected graph is shown in Figure 2.8.

The degree of a node , is the number of edges in incident on . An isolated node
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has degree 0 and an end node has degree 1. For example, a complete binary tree of depth

has end nodes and for , nodes of degree (the non-leaf nodes of the tree)

and one node of degree (the root node). The minimum degree of is the minimum degree

among the nodes of . Themaximum degree of is similarly defined. In graph drawing,

the degree of a graph refers to the maximum degree. In a graph of regular degree every

node has the same degree; examples include the Petersen graph and any “complete graph”.

A graph is complete if every two distinct nodes are adjacent. A more useful measure, for

non-regular graphs, is the average degree of a graph which is the average number of edges

incident on each node of the graph.

Examples of these measures are:

The knowledge nation graph shown in Figure 2.1 has 23 nodes, 55 edges, degree of

19 and an average degree of 5.

The class diagram shown in Figure 2.4 has 8 nodes, 11 edges, degree of 4 and an

average degree of 3.

The example graph shown in Figure 2.9 and 2.8 has 16 nodes, 26 edges, degree of 4

and an average degree of 3.

A sub-graph of consists of a set of nodes and edges of . Formally,

with and , such that both end points of each edge in are in . Edges

between elements of are called internal edges and all other edges are referred to as

external edges, as they have at least one end point that is external to the sub-graph . A

sub-graph that has the same order as , is called a spanning sub-graph of . If is a

sub-graph of , then is the supergraph of .

Undirected graphs are often used for modeling symmetric relationships between el-

ements of information. As such they provide a simple and extensible way to represent

bidirectional relations or relations and their inverse relations. However, in some modeling

problems, the symmetric aspect of these graphs does not adequately satisfy the require-

ments of the problem domain. Instead a different type of graph, namely a “directed graph”

is used. A directed graph or digraph consists of a set of nodes and edges, where each edge
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is an ordered pair of nodes. Edges in a directed graph are called arcs or directed edges.

The ordering gives each edge a specific “direction” or “orientation”, which is typically

represented by an arrow-head in a graph drawing. An example of a graph drawing of a

directed graph is shown in Figure 2.18.

Other graph models, such as the hypergraph [149], the clustered graph [86], and the

compound graph [268] are discussed in more detail in Section 3.3.

It is important to note the size of the graphs we are concerned with in this thesis. For

example, the annual Graph Drawing competition considers large graphs to be in the range

of nodes. For the purposes of this thesis, we are interested in simple undirected

graphs that have a large order greater than and that have a size within an order

of magnitude of the order of . This means we are not interested in, for example, visu-

alising the complete graph on nodes (which has edges). Likewise, the

approaches presented in this thesis are not sufficient for visualizing web-graphs, without

some pre-processing or additional filtering approaches. Instead we would like to visualize

graphs of nodes that contain upto edges.

2.2.1 Drawing Conventions

The combinatorial properties, mentioned above, of a graph can be determined before

any graph drawing takes place. Graph theoretic properties such as whether the graph is

directed or undirected, or whether the graph is planar or not, determine the class of the

graph. Often this class indicates which particular “graph drawing convention” should be

used. A drawing convention is a not a formal agreement about how a drawing should be

created but it is rather a specific rule that a drawing must follow.

Common two dimensional drawing conventions include:

Planar drawing, where no two edges cross, see for example Figure 2.4.

Straight-line drawing, where edges are drawn as straight lines, see for example Fig-

ure 2.8.

Polyline drawing, where edges are drawn as a sequence of connected lines, see for
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Figure 2.8: A straight-line drawing

example Figure 2.9.

Orthogonal drawing, where edges are drawn as polylines, consisting of horizontal

and vertical segments. Nodes are drawn at integer x,y coordinates of a rectangular

grid, see for example Figure 2.19

Downward drawing, where the edges of an acyclic digraph are drawn as monotoni-

cally decreasing arcs in the vertical direction, see for example Figure 2.18.

The most appropriate set of drawing conventions for a graph is often application domain

specific and dependent upon the combinatorial properties of the graph. If these conflict then

it becomes a matter of determining an appropriate trade off or changing the combinatorial

properties of the graph to suit the convention required.

2.2.2 Drawing Aesthetics

The question of readability does not just pertain to text, it also clearly applies to drawings.

For drawings, the question is “For a given drawing how easy is it to understand and how

effectively and efficiently does that drawing convey information?”. Graph drawing algo-

rithms attempt to find a geometrical configuration of nodes and edges which has a high

level of readability, according to some set of criteria.
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Figure 2.9: A polyline drawing

Regardless of the nature of the graph, or the method used to draw that graph, the pri-

mary requirement is that the resultant drawing should be readable. Research has shown that

maximizing the readability of a drawing is crucial to conveying the information contained

in the underlying graph [52, 114, 229, 230, 231, 232, 273].

Unfortunately, readability is often a very subjective matter and measuring the readabil-

ity of a specific drawing is open to even more aspects of personal taste and preference. For

example, the drawing in Figure 2.1 was heavily scorned throughout the Australian media

when it was first published. Could this be the “best” possible drawing of the knowledge

nation graph? Without objective measures, it is impossible to compare and contrast two

drawings or even two layout methods in a scientific manner.

The identification of important features of drawings has been researched since graph

drawing algorithms were first developed [60, 229, 230]. The features identified are used to

form measures of readability. These features of the drawing are typically called aesthetic

criteria and have been codified as a set of formal aesthetics. Broadly speaking, measuring

a graph drawing in terms of these aesthetic criteria shows whether the drawing has “great

beauty” or not.

Although the features of the drawing which impact the formal aesthetic are not inde-

pendent, a broadly accepted set of base goals (aesthetic criteria) have been identified. Some

of the more significant aesthetic measures are informally described below.

Minimizing the number of edge crossings, has been shown to be among the most impor-
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tant goals for the creation of an aesthetically pleasing graph drawing [114, 229, 230, 232,

289]. Drawings with a large number of crossings, especially those caused by long edges,

are difficult to follow [229]. The drawings in Figure 2.10 to 2.17 show the difference be-

tween a drawing with many edge crossings, all the way through to a drawing of the same

graph, with none. A random positioning of the nodes of the graph produces a drawing

similar to the one displayed in Figure 2.10. This graph drawing has unquestionably poor

readability due to the large number of edge crossings. An alternate example is the Korean

ISP information visualization show in Figure 1.3, which exhibits many edge crossings. The

results of applying an edge crossing measure to a series of layouts can be seen in Figures

2.10- 2.17.

Maximizing edge length uniformity is often used in applications where all edges are of

equal significance. One way of representing this is by ensuring that the length of each edge

in the drawing is uniform. This aesthetic criteria can be extended to edge set length uni-

formity, where edges are assigned to categories, each of which has a desired edge length.

Often we wish to maximize the uniformity of the length of each edge, or set of edges. The

results of applying such a measure, where the ideal edge length is 300 units, to a series of

layouts can be seen in Figures 2.10 to 2.17.

Maximizing the distance between non-adjacent nodes ensures that no false relation-

ships, based on proximity are inferred. If nodes that are related are drawn close together

then nodes that have no direct relationship should not be close. Cognitively the worst

case occurs when geometrically close yet non-adjacent nodes, appear to the user as logi-

cally connected. For example, the drawing shown in Figure 2.12 appears to have a dense

grouping of nodes of the left of the drawing. This visual grouping occurs because many

non-adjacent nodes are being drawn close together. In the context of the other drawings

this intuition is clearly false, but alone this grouping might be perceived as a more con-

nected set than it actually is. The results of applying an averaged non-adjacency distance

measure to a series of layouts can be seen in Figures 2.10 to 2.17.
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Figure 2.10: Random Drawing of an 800 Node Triangular Mesh which has 109425 edge crossings
and average edge length of 6018 and an non-adjacent node distance of 10504

Figure 2.11: Figure 2.10 after 10 iterations of a force-directed layout. Crossings = 5964 Avg. Edge
Len= 293 Non Adj. Node Dis = 2497

Figure 2.12: Figure 2.10 after 20 iterations of a force-directed layout. Crossings = 5096 Avg. Edge
Len= 269 Non Adj. Node Dis = 2605

Figure 2.13: Figure 2.10 after 40 iterations of a force-directed layout. Crossings = 2803 Avg. Edge
Len= 255 Non Adj. Node Dis = 3292
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Figure 2.14: Figure 2.10 after 70 iterations of a force-directed layout. Crossings = 2632 Avg. Edge
Len= 262 Non Adj. Node Dis = 3682

Figure 2.15: Figure 2.10 after 100 iterations of a force-directed layout. Crossings = 1876 Avg.
Edge Len= 273 Non Adj. Node Dis = 4099

Figure 2.16: Figure 2.10 after 140 iterations of a force-directed layout. Crossings = 588 Avg. Edge
Len= 277 Non Adj. Node Dis = 5632

Figure 2.17: 800 node triangular mesh drawn with no crossings and an average edge length of 287
and a non-adjacent node distance of 6444.
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Maximizing the symmetries in the drawing aims to display whether the underlying

graph has duplicate parts, or near duplicate parts in its structure. The symmetrical graph

drawing should reflect a balance in displaying those symmetries. Typically, symmetries

provide a formal balance to the layout which can make the process of understanding that

graph easier. If repeated or near repeated sections of the graph are drawn with rotational

or reflexive symmetry, then the understanding of one section often results in a faster com-

prehension of the other symmetric sections. Informally, the sequence of drawings in Fig-

ures 2.10 to 2.17 increase in symmetry. Measures of symmetry are difficult to define and

compute; see [229]. The difficulty often arises from the nature of measuring exact versus

near symmetry. Users can often perceive symmetries even when the underlying drawing

has no strict reflections or rotational symmetries.

Maximizing the angular resolution of the drawing aims to ensure the individual

edges drawn, are clear and distinct. The angular resolution of a drawing is the minimum

angle formed between a pair of edges that are either crossing or incident on the same node.

A drawing that exhibits a low angular resolution, such as Figure 1.3 typically suffers a

visual effect called blobbing which makes identifying individual edges difficult and hence

makes the drawing hard to follow and understand.

Area is a measure of how efficiently a drawing uses available screen space. The area

occupied by a drawing is typically measured by the maximum and -extent of the node

positions, and the -extent in the case of measuring volume for three dimensional drawings.

The goal of this aesthetic is to ensure that area efficient drawings are produced, since screen

real estate is a valuable commodity not to be wasted.

Aspect Ratio is a ratio measure of the length of the longest side to the shortest side

of a rectangle which encloses all the nodes of the drawing. A drawing with a high aspect

ratio may be difficult to effectively visualize as it will not conveniently fit on a computer

monitor. It is not uncommon for very large graphs, drawn with the popular Sugiyama style

layouts, to suffer from very high aspect ratios. This is primarily due to the graph’s topology

and the ranking process done within the Sugiyama algorithm.
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Other Aesthetics

Given the nature of the graphs that this thesis aims to address, several other important

criteria, that any reasonable multi-level layout technique should meet are introduced. An

informal description of three such criteria are given below.

Minimize the introduction of edge crossings by abstraction to ensure that higher

level views or visual précis are not less aesthetically pleasant than the drawing of the un-

derlying graph. Any abstraction, represents a simplified form of the underlying graph. De-

pending on the size and combinatorial properties of the graph, this simplification departs

from representational accuracy, to a variable range of possible degrees. Using an auto-

matic simplification method it is entirely possible to generate a simplified drawing with

edge crossings, where the underlying graph drawing has none. Any simplification method

should aim to minimize the introduction of such artifacts of the simplification process.

Glyphs representing groups of nodes should not overlap as this would severely af-

fect the readability of the drawing. An abstraction process groups nodes, which are then

drawn using a glyph. As with the underlying drawing, nodes which are drawn close to-

gether or overlapping imply relationships where none exist. At higher levels of abstraction,

the false positives may result in a more distorted view of the underlying elements and their

interrelationships.

Minimize the variance in abstraction aspect ratios to ensure a smooth visual map-

ping between abstraction levels. The FADE drawing paradigm is based on providing high

level simplified views of the underlying graph structure. Users can move between levels or

can selectively show various parts at different levels of abstraction. Maintaining a similar

aspect ratio between each visual précis of the graph provides a visual landmark to aid the

user in moving between levels of detail.

Typically, altering the layout of a graph to improve one aesthetic criteria can nega-

tively impact another, that is, the criteria are not independent and some trade off between

the criteria must be determined. This determination is often based on the nature of the

application, the type of the graph and the purpose to which the drawings are put. This

determination gives rise to a sub-set of aesthetic criteria that are important for a given
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Figure 2.18: A graph drawn with the Sugiyama Algorithm, using GraphWin (AGD)

application domain. This determination is crucial, as attempting to satisfy a large num-

ber of criteria simultaneously is at best computationally expensive and at worse futile and

infeasible [52, 60, 114, 229, 232, 273].

2.2.3 Graph Drawing Algorithms

Hundreds of graph drawing algorithms, refinements, and specializations have been devel-

oped over the past twenty years [60, 76, 272]. Most of these attempt to produce drawings

according to some sub-set of the drawing conventions outlined in Section 2.2.1 and many

attempt to address the drawing aesthetics discussed in Section 2.2.2. Many toolkits have

been developed from these algorithms. A typical toolkit contains three or four paradigms.

One such toolkit is AGD [2]. Three pictures from AGD are shown in Figures 2.18, 2.19,

and 2.8.

Figure 2.18 shows a layered graph drawing from AGD. Layered graph drawings are

also know as hierarchical or Sugiyama style layouts. Typically this drawing convention is

used to effectively represent hierarchies of information. Informally, layered graph drawing

algorithms consist of three steps. The first step is called layer assignment, where the nodes
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Figure 2.19: An orthogonal drawing

of the graph are partitioned into layers. This partitioning can be based on the domain

knowledge of the graph, such as a set of partial orders or is based on the combinatorial

properties of the graph. The second step consists of the nodes in each layer being permuted

to reduce the number of edge crossings between layers. The third step alters the horizontal

positions of the nodes, and edges are straightened to improve the readability of the drawing.

The original layered graph drawing algorithm was first proposed by Sugiyama, Tagawa

and Toda [271]. Subsequent work has refined the method along with adding many new

techniques for layer assignment and crossing reduction [40, 73, 76, 210]. The layered

graph shown in Figure 2.18 consists of 10 nodes and 25 edges drawn on 9 layers.

Figure 2.19 shows an orthogonal graph drawing from AGD. The objective of an or-

thogonal graph drawing algorithm, is to produce a drawing with node centres and edge

bends on “grid points”, with edges drawn as polylines consisting of horizontal and vertical

line segments [36, 60, 261].

A variety of orthogonal graph drawing algorithms exist [25, 27, 77, 78, 179, 215, 216,

217, 261], and each tries to satisfy a set of aesthetic criteria; these include minimizing

the area (or volume), minimizing the number of edge bends, minimizing the maximum

number of bends in a single edge, minimizing crossings (or intersections) and giving a

good aspect ratio to the drawing. The notion of orthogonal layout has also been extended

to three dimensional orthogonal drawing [17, 26, 51, 77, 78, 179, 218].

The planar orthogonal graph drawing shown in Figure 2.19 has 16 nodes and 24 edges
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Figure 2.20: Example of edge and nonedge forces in a simple force directed model.

and contains 9 edge bends. This is the same graph as shown in Figure 2.9, which is a

layered polyline drawing.

Figure 2.8 shows a straight line graph drawing from AGD, produced by a “force

directed” layout algorithm. This general class of layout algorithms are popular and in

widespread use. Experience with force directed algorithms show that they often produce

aesthetically pleasing drawings. We now describe “force directed” algorithms more for-

mally, as it is this class of algorithm we base our FADE drawing and visual abstraction

paradigm on.

2.2.4 Force Directed Graph Drawing Algorithms

Force directed graph drawing algorithms, also know as spring algorithms or spring em-

bedders continue to figure notably among the latest developments in graph drawing [75,

98, 116, 121, 237, 283]. Force directed algorithms tend to emphasize symmetry, maxi-

mize edge length uniformity, maximize the distance between non-adjacent nodes, and as

by-product tend to minimise the number of edge crossings.

Force directed algorithms view the graph as a virtual physical system, where the nodes

of the graph are bodies of the system. These bodies have forces acting on or between them.

Often the forces are physics-based, and therefore have a natural analogy, such as magnetic

repulsion or gravitational attraction. For example in Figure 2.20 the edges can be modeled

as gravitational attraction and all nodes have an electrical repulsion between them. It is

also possible for the system to simulate unnatural forces acting on the bodies, which have
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Figure 2.21: Showing the spring model from initial drawing ( ) to the final layout( ) with a mini-
mum energy configuration.

no direct physical analogy, for example the use of a logarithmic distance measure rather

than Euclidean [69].

Regardless of the exact nature of the forces in the virtual physical system, force di-

rected algorithms aim to compute a locally minimum energy layout of the nodes. This is

usually achieved by computing the forces on each node and iterating the system in discrete

timesteps. The forces are applied to each node and the positions are updated accordingly.

A commplementary approach views the graph as an energy system and algorithms try to

minimise the energy in the system [147].

Force-directed algorithms are often used in graph drawing due to their flexibility, ease

of implementation, and the aesthetically pleasant drawings they produce. However, classi-

cal force directed algorithms are unable to handle larger graphs due the inherent O( ) cost

at each timestep, where is the number of bodies in the system. This is a common prob-

lem and has prohibited the practical use of force directed algorithms for even moderately

sized graphs of a few hundred nodes. The FADE layout paradigm, introduced in this thesis,

overcomes this computational limitation to allow large graphs to be drawn, and abstractly
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represented.

Background

The simulation of a virtual physical system for object placement pre-dates the develop-

ment of force directed algorithms for graph drawing [240]. Given that it is NP-hard to

draw a graph so that all edge lengths are the same, Eades first proposed a heuristic al-

gorithm for drawing undirected graphs in two dimensions, based on simulating a virtual

physical model [69]. This model is now referred to as the “spring model”, since each node

is modeled as a ring with springs replacing the edges. In this model non-adjacent nodes

repel each other according to an inverse square law. Given an initial random layout, the

springs and the repulsive forces move the system to a locally minimal energy state, that

is, an equilibrium configuration, which is then drawn. Eades noted that in such an equi-

librium configuration, all the edges typically have relatively uniform length, and nodes not

connected by an edge are drawn far apart. Further, drawings of an equilibrium configura-

tion tend to display the underlying symmetries in the graph [60, 75, 102, 193, 214]. The

example shown in Figure 2.21 shows the effect of iteratively applying a simple force di-

rected algorithm to an initial random layout of a graph. The resultant drawing exhibits the

three previous aesthetic criteria noted, namely: edge length uniformity, node separation

and symmetry.

Since the original spring model, there have been a large number of refinements and

specializations to the class of force directed algorithms [18, 23, 69, 75, 97, 102, 115, 116,

118, 148, 237, 270, 269, 280, 283]. The flexibility and simplicity of the original force

directed approach has allowed numerous domain specific customizations, algorithmic im-

provements and applications to be developed [60, 93, 135, 193, 237, 238, 249, 269, 295].

Refinements

One of the most significant refinements to the basic spring model is the force directed al-

gorithm of Kamada and Kawai [147] which attempts to model the graph theoretic distance

between two nodes by their geometric distance in the graph drawing. The algorithm mod-

els a force between each pair of nodes which is proportional to the difference between their
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geometric and graph theoretic distances. At each step in the algorithm, the node with the

highest energy is moved to a new location. This algorithm performs a gradient descent

based on classical numerical analysis methods to reach a local minimum.

An inherent weakness of many force directed algorithms, such as the spring model

and the Kamada and Kawai method, is that they often result in equilibrium configurations

at a local minimum such as that shown in frame of Figure 2.22. Drawings of such

local minimum are less aesthetically appealing than a global minimum. To overcome this

problem numerous optimizations and heuristics have been proposed.

A class of force directed algorithms that uses “randomness” to avoid ending up at a

local minimum was pioneered by Davidson and Harel [57] and independently by Men-

donca [189]. This approach draws from a statistical mechanics technique called simulated

annealing. The goal is to reduce some cost function of the system, while avoiding local

minima. The key to such approaches is that a probability function is used to allow increases

in the cost, in the hope of reaching a lower global cost in the long run. Coupled with this

in simulated annealing, is the notion of a falling “temperature”. At the beginning of the

simulation the temperature is high, so the probability of a cost increase is high, such as the

move from configuration to in Figure 2.22. As the simulation progresses, the tempera-

ture is steadily lowered according to some cooling schedule, so the probability of choosing

a state with a higher cost tends to zero. The coupling of a more simplified simulated an-

nealing process with a force directed layout, was independently developed in the field of

information visualization for document clustering [44]. The Harel simulated annealing ap-

proach has been refined and extended in a variety of algorithms and systems. Some of the

improvements include: more efficient adaptive cooling schedules [94, 279, 280] and par-

allel algorithms [39, 54, 162, 197]. The main drawback of simulated annealing for graph

drawing, is the fact that it is computationally expensive, so its use in graph drawing, where

interactivity is crucial, is often infeasible.

Fruchterman and Reingold’s grid based force directed approach [97] uses a more sim-

plistic cooling schedule than that of the simulated annealing class of algorithms. Finally,

an alternate approach to find the global minimum is the conjugate gradient method as

presented in [280].
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Figure 2.22: Frames I,II,III show the steepest decent approach to energy minimization. Frames
I,a,b,c show a simulated annealing approach

Specializations

The range of specializations and customized applications, that use the force directed ap-

proach include: magnetic or orthogonal springs for directional edge alignment [139, 206,

270, 269], forces that maintain topology [23], symmetric graph drawing [75, 184] to dis-

play geometric automorphism groups [75, 184], dynamic graph layout [34, 180], three di-

mensional spring algorithms [98, 167, 197, 214, 239], cluster visualization [44, 136, 236,

288], online graph exploration [135, 136], web site visualization [68, 71, 126, 249, 296],

avoiding node overlaps [102, 295], software visualization [97, 119, 238, 243, 262, 263,

264], constraint based layout [118, 148, 288], three dimensional viewpoint location [134,

292], and more recently, large scale graph layout [98, 99, 113, 115, 116, 237, 239, 283,

284].

We now review a selected range of specializations.

Although most force directed algorithms treat nodes as singularities, in practice this

is not the case. In many applications nodes must be represented as labeled entities.
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Gansner et al. [102] have shown a method to reduce node overlaps and visual clutter.

This approach, based on an improved force directed layout, applies a post process

node positioning using a Voronoi decomposition of space [91].

Tunkelang [280] provides a force directed algorithm framework for experimenting

with numerical optimizations. This framework supports the interactive drawing of

small to medium sized graphs. Tunkelang includes an empirical evaluation of a

variant of the conjugate gradient method search strategy to find a global minimum.

This framework also supports simple Barnes-Hut and grid variant optimizations to

the simple force directed approach.

Brandes and Wagner [34] have shown a forced directed algorithm using a bayesian

paradigm for “dynamic graph layout”. Dynamic graph layout refers to the layout of

graphs that change over time.

Huang et al. [71, 135, 136] provide an online modified force directed algorithm for

graph exploration, where the graph is partially unknown. Along with the classical

repulsive and attractive forces this algorithm includes many unnatural forces to indi-

cate clusters and the direction of exploration.

Wills et al. [295, 296] demonstrate a post process force directed repelling algorithm

to avoid node overlaps, for large to very large graphs. This method is used in con-

junction with a computationally inexpensive initial layout method such as a hexago-

nal or circular layout.

Frick’s GEM algorithm [94] incorporates several heuristic refinements to the basic

force directed approach.

Along with various specializations, there have also been a wide variety of graph draw-

ing systems developed which include force directed methods, such as: daVinci [96],

GraphViz [164], FADE [237], GEM [95], GraphEd [127], Graph Layout Toolkit [181],

Graphlet [129, 128], Jiggle [280], Leda [187, 186], and VCG [255].

However, one common feature of most force directed layout schemes is their inability

to scale when drawing larger graphs. The problem stems from the high computational cost
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of force directed placement, typically as noted in [23, 60, 97, 118, 136, 135, 173,

237, 249, 280, 284]. Although such algorithms and their specializations are clearly very

popular and well researched, it was not until very recently that research addressed their use

in drawing large and very large graphs.

2.2.5 Large Scale Graph Drawing

There are several inter-related and inter-dependent issues which must be addressed when

dealing with large graph drawings; these include:

the computational effort involved in determining an aesthetically pleasant drawing

the effective use of screen space

the cognitive effort placed on the end user when viewing a large graph drawing

the ability to present high level visual structures, such as clusters

and the actual time to render large amounts of two or three dimensional graphical

information.

Graph drawing systems that deal with thousands of nodes typically address one or possibly

two of these issues, but rarely all five. We now give an overview of existing research that

addresses these issues.

Fruchterman and Reingold’s grid based, force directed approach [97] places sets of

nodes into cells based on their locations within a simple grid. To reduce the required

number of computations, only nodes within cells or neighbouring cells exert forces

on one another. This method draws on research from the domain of gravitational

physics, specifically methods to address the “N-BODY” problem. The computational

efficiency aspects of the FADE paradigm, introduced in this thesis, likewise draw on

research into the “N-BODY” problem; see Chapter 4 for more details.

Graph exploration techniques [71, 135, 136, 137, 200, 201] are based on a query

graph model. These techniques attempt to address most of the problems associ-

ated with large graph drawing, by allowing the user to interactively visualize only a
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Figure 2.23: A schematic view of the tree
Figure 2.24: Skeleton view with meta-node
glyphs. Reproduced by courtesy of
Scott Marshall from I. Herman et al. (1998) [123]

small portion of the entire graph at any one time. Underlying this graph drawing ap-

proach is an interactive graph query system which supports the query-exploration

cycle. These approaches differ significantly from traditional graph drawing sys-

tems, since they rely on visualising only a relatively small part of the graph. OF-

DAV [71, 135, 136, 137] augments this approach by adding a trail of focus nodes

which indicates where the user has previously explored the graph. The hyperbolic

visualization approach of Munzner [200, 201] uses a three dimensional hyperbolic

view with the current focus node at the center. This hyperbolic view is based on a

Klein model where the projected area is a sphere in three dimensional space.

An algorithm for the directed acyclic graph drawing that employs information hid-

ing to limit the number of visual element on screen, in terms of extracting a skeleton

of the graph, is presented by Herman et al. [123]. The skeleton of a graph is the

set of nodes and edges that are determined to be significant by a given metric (see

Figure 2.24). This skeleton is considered to be the structural backbone of the graph

and contains signifigant landmarks of the graph. This extension of the Reingold and

Tilford algorithm [241] provides schematic views of the graph based on the skele-

ton and replaces non-skeletal parts by a colour saturated Trapezoidal glyph set (see

Figure 2.23).

NicheWorks is a graph drawing system for very large graphs in the region of 10,000

to 100,000 nodes [295, 296]. The primary focus of this system is to address the com-

putational effort involved in large scale graph drawing. This system, although origi-
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nally designed for telephony applications, has been extended to other problem areas

such as software modification visualization, web site analysis and the exploration of

databases for data patterns. The basic approach of NicheWorks is to initially position

the nodes according to computationally inexpensive ( ) layout methods. These

methods include: circular layout, hexagonal layout, and radial layout. This approach

works well when the intention is to see the overall structure in the graph; whether it

is connected, disconnected, or two-connected. After the initial placement, incremen-

tal algorithms such as steepest descent, repulsion, and node swapping can be applied

to improve the layout. Here large scale visualization is supported by pan and zoom

features.

Recent advances in the use of graph theoretic partitioning approaches for large graphs,

which are suited for use in the force-directed algorithms, are discussed in Section

2.2.7.

The use of clustering, both to reduce the visual complexity and the computational com-

plexity of producing the drawing, is an area of research that shows great promise in ad-

dressing the issues associated with large graph drawing. This is discussed next.

2.2.6 Clustering in Graph Drawing

Graph drawing systems which show high level clusters from the underlying graph, rather

than the entire graph are becoming increasingly common [50, 66, 72, 73, 86, 177, 235,

237, 244]. These techniques typically concentrate on addressing the effective use of screen

space by showing high level structures, that is, clusters, rather than the entire graph at the

lowest level of detail.

In the area of graph drawing, Sablowski and Frick [249] first proposed a method which

initially attempts a graph theoretic clustering to reduce both the size of the graph to be

drawn and the visual complexity of the resultant drawing. Developed independently for

document relationship visualization, the Narcissus system [119] showed that a force di-

rected approach could be used to yield clusters that are “visually apparent”. As noted by

both sets of authors, their respective approaches coupled with a force directed layout, tend
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to display the natural clusters of the graph or data set. It is this intuition, that is realized

and evaluated in this thesis for large graphs and their visualization.

The multilevel representation introduced by Feng [86] shows the entire graph and its

different levels of abstraction. Each level of abstraction represents a clustering of the nodes

of the graph. Subsequent work has shown how this method can effectively use screen

space by presenting high level structures, rather than the entire graph. Follow on work by

Duncan et al. [50, 66] introduces a cluster-based drawing method which first hierarchically

clusters the graph via a balanced aspect ratio (BAR) tree. This allows properties of the

clustering such as balance and convex cluster regions to be achieved. This cluster tree can

then be drawn on various levels of detail. Unfortunately, when the initial embedding is

bad (according to various aesthetic measures) then this method can generate poor clusters

with low cohesion and high coupling [50]. This technique is promising for interactive or

dynamic graph layout if the goals of this method can be balanced against possibly large

changes to the cluster tree. Large changes in the cluster tree, although not significant in a

graph theoretic sense, can alter the layout enough to destroy the users’ overall mental map.

The multiway ratio cut method of Roxborough and Sen [244], based on a technique

from circuit partitioning, aims to simplify the drawing by first identifying natural clusters

which can be drawn using a simple circular layout.

Higres, a simplified clustered graph editor, allows for the recursive definition and edit-

ing of large clustered graphs [177]. Finally, the clustered graph model has been widely

accepted and can be found in commercial graph drawing software such as Graphlet, GLT

and D-Abductor [194, 195].

The problems associated with the effective use of screen space and the cognitive effort

placed on the end user when viewing a large graph drawing are common throughout the

area of information visualization. Collectively, techniques that deal with forming an ap-

proximate or distorted view, to enhance the volume or readability of data, are methods for

visual abstraction. This is dealt with in more detail in Section 2.1.3.
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Figure 2.25: Multilevel graph partitioning, Figure adapted from [80, 150]. The initial clustering is
projected up as the graph is successively uncoarsened. This is refined at each uncoarsening step to
give the refined partitioning.

2.2.7 Multilevel Method Graph Drawing

Parallel to the work in this thesis, Walshaw introduced a multilevel algorithm for force di-

rected graph drawing [283, 284]. Walshaw produced this force directed method motivated

by the need to investigate alternately the micro- and macro-structures from the results of

large graph partitioning algorithms. This layout method is based on a multilevel graph

partitioning method. In general, multilevel methods partition a representative graph, called

the “coarsened graph”, which is much smaller than the underlying graph, called the “fine

graph”. The process of creating the smaller graphs, the coarsened graphs is referred to

as coarsening the graph, such as the series of graphs to shown in Figure 2.25. The

coarsening typically halts when the coarse graph has a few hundred nodes. The initial

partitioning is then made on the smallest coarse graph, for example in Figure 2.25.

The layout algorithm proceeds by first applying a force directed layout to the coarsened

graph. The graph is then projected and modified back though a series of increasingly

“finer”, that is, more detailed graphs. At each stage the refined partitioning is used to
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minimize the amount of computation required in applying the forces in the system. As

in the Fruchterman Reingold approach, non-adjacent regions do not exhibit forces on one

another. Finally, the partitioning and associated layout of the original underlying graph is

formed, see Figure 2.25.

This method, which is a development of great practical importance for graph drawing,

differs from the FADE paradigm in several ways.

The FADE paradigm doesn’t require the computation of a new graph coarsening when

the graph changes. As such it supports small graph updates and is suitable for dy-

namic graph layout and adjustment.

The FADE paradigm supports multilevel visualization of large graphs. This is based

on a geometric decomposition rather than some graph theoretic partitioning of the

graph.

The FADE paradigm offers geometric based visual précis along with measures of

their accuracy in representing the underlying graph.

An earlier method by Harel et al. [113, 115] used a multilevel approach to speed up

a simulated annealing process. This method was successfully demonstrated on generated

graphs of up to 3000 nodes. This method, although based on the multilevel method, is

not as elegant or scalable as the refined method presented by Walshaw, as it contains a

quadratic time component. As noted in [115], a local beautification step, which tends to

dominate the computation, was required to remove crossings for graphs of large generated

binary trees.

A method by Kobourov et al. [98] based on the notion of “set filtration” and “neigh-

bourhood determination” is actually another multilevel variant. A set filtration is a simple

coarsening step, in the multilevel sense. The uncoarsening and refinement is achieved by

the re-introduction of nodes in a barycenter placement manner. In this method the graphs

are positioned in higher dimensions and projected down for “smoother” drawings in two

or three dimensions.
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Models: Clustering and Visual Abstraction

“Logicians may reason about abstractions. But the great mass of men must

have images. The strong tendency of the multitude in all ages and nations to

idolatry can be explained on no other principle.” - Thomas Macaulay

This chapter describes the models, measures and methods used for the clustering, visual

representation, and abstraction of large amounts of relational information. The “hierarchi-

cal compound graph model”, described in Section 3.3, supports our FADE graph drawing

and abstraction paradigm, described in Chapter 4. Further, this clustered graph model is

used in various clustering quality measures described in this chapter. The application of

our graph drawing and abstraction paradigm, based on this graph model and the testing

of our clustering and graph drawing aesthetic measures, is described in the case studies in

Chapters 5 and 6.

First, we motivate this chapter by giving an overview of the problems associated with

large scale graph drawing in Section 3.1. We describe how the “hierarchical compound

graph model” supports all the areas of large scale information visualization that we address

in this thesis, from performance to visual abstraction. Section 3.2 presents an introduction

to the clustering terminology used in this thesis. Section 3.3 describes models for graph

clustering and specifically the “hierarchical compound graph model”.

We provide an introduction to the notion of a “quality measure” of a graph clustering

in Section 3.4. In Section 3.5, we describe in detail our clustering quality measures for

“hierarchical compound graphs”. These measures allow different clusterings of the same

graph, from different layouts, to be compared and evaluated. Section 3.6 reviews existing
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methods for graph clustering.

This thesis is primarily concerned with geometric graph clustering, so Section 3.7 re-

views existing geometric graph clustering models. Section 3.7.1 discusses how “hierarchi-

cal space decomposition” methods form the basis of our hierarchical compound graph gen-

eration technique. These decomposition methods are computationally inexpensive, making

them suitable for FADE. However, the “hierarchical compound graphs” created may exhibit

many artifacts of the creation process. In the case studies, we show how the hierarchical

compound quality measures can be used to test the relative inaccuracies in such generated

graphs.

In Section 3.11, we describe how the “hierarchical compound graph model” can be

used in the creation of a variety of abstract views (“visual précis”) of the underlying graph.

A précis is a sub-graph extracted from a “hierarchical compound graph”. A visual précis

is the drawing of an extracted sub-graph. The types of précis include: “horizons”, “event

horizons”, “cut views”, “multi-cut views”, and “bell curve views”.

3.1 Motivation

Informally, a hierarchical compound graph consists of a set of nodes and edges, clusters

(groups of nodes) and “implied edges” (abstractions of edges). This chapter describes

models for hierarchical compound graphs, their visual forms, and quality measures. The

aim of these models is to address four related issues in large scale information visualization:

There is a need to significantly improve the performance of classical force directed

graph drawing algorithms if they are to be useful for drawing large graphs.

Drawing algorithms must address large scale dynamic graph layout if they are to be

useful in real world application domains.

Screen real estate is a scarce commodity, so the generation by “hierarchical cluster-

ing” of higher level views of large graphs are required. These views, called “visual

précis”, are projections of abstract representations of the underlying graph.
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Once higher level abstract views are introduced by “hierarchical clustering”, then

hard quantitative measures of such clusterings are needed.

The FADE paradigm includes clustering (to create abstractions of the large graph) and vi-

sualization (to create pictures of different levels of abstraction). The method uses a combi-

nation of geometric and combinatorial techniques. We map the graph nodes to geometric

points, cluster these points using geometric methods, then use the result to produce a “hi-

erarchical compound graph”. As noted in other domains, to realize this model we must

address two problems [80, 140]:

Graph nodes have no intrinsic geometric information; we must synthesize the geom-

etry.

Geometric clustering is suitable for a graph only if the geometric distance between

node images reflects the underlying graph theoretic relationships.

The FADE drawing paradigm described in the next chapter addresses both of these prob-

lems. In fact, the first problem is addressed by all graph methods, that is, their goal is

to synthesize a geometry for the graph so that it can be visualized. The second problem

is specifically addressed by force directed graph drawing methods such as those in FADE.

Force directed methods attempt to produce a drawing so that related nodes are drawn close

together.

The FADE paradigm operates on both geometric and combinatorial models for clus-

tering and visual abstraction. This chapter describes models for both aspects, as well as

measures for the quality of both.

3.2 Terminology for Clustering

Clustering is the process of grouping similar objects into naturally associated subclasses.

Clustering is one method for partitioning the objects of a set. This process results in a set

of “clusters” which somehow describe the underlying objects at a more abstract or approx-

imate level. The process of clustering is typically based on a “similarity measure” which
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Figure 3.1: Six nations are clustered, based on a geopolitical similarity measure.

allows the objects to be classified into separate natural groupings. A similarity measure

(or dissimilarity measure) quantifies the conceptual distance between two objects, that is,

how alike or disalike a pair of objects are. Determining exactly what type of similarity

measure to use is typically a domain dependent problem. A cluster is then simply a collec-

tion of objects that are grouped together because they collectively posses a strong internal

similarity based on such a measure. For example, the clustering in Figure 3.1 is based on

a similarity measure that uses political considerations, geographic connectivity, and geo-

graphic distances to cluster the six countries. The higher level groupings and , represent

abstractions of the underlying countries. Point data consists of a set of attributed items.

Clustering of point data attempts to place items with similar attributes into groups. A clus-

tering method is a procedure which yields a set of clusters that possess strong internal

similarities.

Clustering is a fundamental scientific process in a variety of disciplines and has been

studied for hundreds of years. Clustering is used in areas such as: medicine [8, 259, 304],

anthropology [65, 178], economics [67, 156], soil analysis [303], data mining [108, 140,

286, 287], reverse engineering [213, 294], program comprehension [107, 183, 281, 301],

software maintenance [182], and software engineering in general [82, 103, 104, 130, 138,

204]. Basically any field of endeavor that necessitates the analysis and comprehension of

large amounts of data may use clustering.

Formally, a clustering1 of a set is a list of subsets of , such that:
1This thesis concerns itself with hard clustering which differs from that of fuzzy clustering which assigns

each node a degree of membership in several clusters.
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, and

for all
(3.1)

The breadth of application of clustering has spawned a great wealth of supporting concepts

and terminology. We now review the main items:

Unsupervised classification is the use of computing technology to aid in the automatic

clustering of typically large data sets, without any a priori knowledge of their classifi-

cation [8, 65, 140]. This clustering approach is commonly applied to problems in “ex-

ploratory data analysis”, where little a priori knowledge is known about the structure of

the data. Further, supervised methods typically employ a training set of classifiers, the

formation of which is a computationally expensive process [156, 192]. The goal of unsu-

pervised classification is to automatically create a set of clusters so that objects within one

cluster are more similar to each other than they are to objects in another cluster. Recently,

the term clustering has become synonymous with the term unsupervised classification.

Exploratory data analysis is the formation of a hypothesis about the structure and nature

of particular data. Typically, exploratory data analysis is used when there is relatively lit-

tle a priori knowledge about the data and any assumptions may cause misleading results.

Confirmatory data analysis is based on a hypothesis that the data has a particular form

or structure, and the analysis is simply performed to confirm the hypothesis. This thesis

mainly considers clustering for exploratory data analysis and how this clustering relates to

large scale visualization.

3.3 Models for graph clustering

As noted in Chapter 2, graphs are often used in modeling relational information. The

scale of the information contained in such graphs has resulted in the need for methods to

aggregate or approximate the graph. Such approximation techniques create representations

at higher levels of abstraction and are often based on “graph clustering” techniques.

Graph clustering is the process of grouping similar nodes of a graph into a set of sub-
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graphs. This process is often based on some similarity measure that is used to cluster

the nodes. Unlike point data clustering, these similarity measures typically consider the

edges as well as the nodes [79]. For example, the dissimilarity between two nodes may

be proportional to the graph theoretic distance between them. Graph clustering is used in

various fields such as; VLSI design [30, 41, 159], parallel processing [62, 64, 152, 153],

network analysis [87, 173], hyper-media analysis [121, 135, 201, 203, 249, 276, 297],

graph drawing [16, 66, 79, 86, 98, 210, 237, 283], and software maintenance and reverse

engineering [9, 112, 141, 142, 163, 169, 188, 221, 262, 281].

The reasons for graph clustering vary but the goal of creating a smaller, more abstract

and simpler representation of the graph is generally the same. Ideally the clusters formed

should be the natural clusters of the graph; however as noted by Edachery [79], there is

no universally accepted formal definition for a natural cluster, instead only some intuitive

understanding, see Section 3.4.

Graph clustering methods take a graph and produce a clustering for that graph. Such

methods can be dichotomized as either “graph theoretic” (discussed in Section 3.6) or “ge-

ometric” (discussed in Section 3.9). Broadly speaking a graph clustering method should

produce clusters with high “cohesion” and low “coupling”, that is, there should be many

internal edges2 and a low “cut size”. The cut size or external cost of a clustering simply

measures how many edges are external to all sub-graphs, that is, how many edges cross

cluster boundaries. These edges, also referred to as an edge separator set, if taken away

would result in a set of disconnected sub-graphs. Some degree of uniformity of cluster size

is often a desirable property of the results produced by a clustering method. A uniform

graph clustering is where is “close to” for all . The formal

definition of “closeness” here depends on the domain.

Hierarchical clustered graph. The clusters of a graph can be clustered themselves, to

form a higher level clustering, and the clusters of clusters can be clustered, and so on. A

“hierarchical clustering” is a collection of clusters with the property that any two clusters

are either disjoint or nested [81, 140]. We need to model this “hierarchical clustering” in a

formal way. A hierarchical clustered graph ( ) consists of an underlying graph and
2This notion can be extended to include weighted graphs.
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Figure 3.2: Hierarchical compound graph with nodes, clusters, edges in red and implied edges in
green

a rooted tree such that the leaves of are exactly the nodes of [86]. Here the tree

represents an inclusion relationship, so a leaf of the tree represents a node of the graph

whereas an internal node of the tree, referred to as a twig, represents a set of graph nodes,

that is, a cluster. Each twig of represents a cluster consisting of the nodes of that

are the leaves of the sub-tree rooted at .

Implied edges come about because the clusters produced by a graph clustering method

have no inherent interrelationships (edges) between them but instead can have “implied

edges”. The intuition behind an implied edge is that two clusters are connected by an im-

plied edge if the nodes that they contain are related. There are several ways to formalise

this intuition. Unless otherwise noted, an implied edge is defined as follows. If node in

has an edge to node in , then there is an implied edge from to . Multiple edges can

be ignored, or summed to form weighted implied edges. Thresholding can form another

type of implied edge, where clusters are connected by an implied edge only if there is at

least a certain number of actual node-to-node edges. Clearly other approaches, including

the use of domain knowledge about the node attributes and types of interrelationships, are

possible.

A Hierarchical compound graph consists of a hierarchical clustered graph ( ) and
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an implied edge set , as shown in Figure 3.2.

Précis are extracted sets of clusters, implied edges, nodes and edges from hierarchical

compound graphs, used to form abstract representations of the underlying graphs. Sup-

pose that ( , , ) forms a hierarchical compound graph with nodes and

clusters which are nodes of such that every leaf of is a descendant of

exactly one . The précis defined by and is a graph whose

node set is ( ) and ( ) with implied edges between the clusters,

real edges between the nodes, and implied edges between clusters and nodes (which are in-

duced by inclusion). This model differs from the clustered graph model of Feng [86] with

regard to implied edges, and it is quite close to the “compound graph model” of Sugiyama

and Misue [268] .

A visual précis is the drawing of a précis. This extended graph model, with an implied

edge set, allows a variety of précis to be extracted from the hierarchical compound graph,

such as “horizons”.

Horizons are the simplest form of précis drawn from the hierarchical compound graph. A

horizon is a précis where all the clusters are equidistant from the root of the inclusion tree

and all the nodes are less than or equal to the same distance from the root as the clusters.

A hierarchical compound graph method creates a hierarchical compound graph from an

underlying graph. Typically these are recursive clustering methods which produce a nested

series of clusters and implied edges. A hierarchical compound graph method may ignore

the edges and implied edges and take only the attributes of the nodes and clusters into

consideration, in which case it is equivalent to a hierarchical point data clustering method.

3.4 Quality Measures for Graph Clustering

A graph clustering quality measure gives a quantitative measure to the “goodness” of a

particular clustering. Such a measure is a function that returns a value, that may be used to

compare the relative quality of two different clusterings and of a graph .

Ideally, given the optimal clustering of a graph, it is relatively easy to formulate a

quality measure. Such a measure should compare the optimal clustering with a solution
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from any given clustering method. One such measure is theMinkowski measure which

is based on the normalised distance between representative matrices for the clusterings

and [117, 192]. To compute this measure, we first describe each of the clusterings

and with an adjacency matrix , where

if and are in different clusters, and

if and are in the same cluster
(3.2)

Denote the adjacency matrix for by and the adjacency matrix for by and the

number of elements in the matrix as .

. Then,

(3.3)

Another measure which uses the optimal clustering is the all-pairs measure [156].

This quality measure determines a value for overall difference between the matrices.

(3.4)

The primary drawback of such measures is the a-priori need for , the optimal or “true”

clustering. In general there may be a set of optimal clusterings rather than just one. Further,

with real application data it is not practical to expect that an optimal clustering is computed

before the clustering takes place. However, a test bed of graphs, for which an optimal

clustering is known, might be generated to perform a comparative study of the qualities

produced by different graph clustering methods. In practice, this test bed approach is often

used to measure the performance of new clustering methods against existing techniques,

such as Koschke’s framework [163] described in Chapter 5.

A different approach is to formulate measures based on the desirable properties one

might expect a good clustering to have. Such measures then allow the relative quality of

two different clusterings to be compared, without having to know the optimal clustering.

This is the general approach taken in this thesis, that is, to measure and validate the relative

quality of the clustering strategies across different relational information domains. These
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quality measures can be dichotomized as “graph theoretic” or “geometric”, depending on

the nature of the attributes used to determine the measure.

Such measures, although classically applied to a single level of clustering, can be ex-

tended or generalized to produce quality measures for hierarchical compound graphs. This

thesis presents two heuristic sets of measurements, called the “clustering quality measures

for hierarchical compound graphs” and the “clustering quality measures for geometric

graph clustering”.

Here we specify several measures, graph theoretic and geometric, related to both graph

drawing and hierarchical compound graphs. The goal is to then evaluate several of these

measures on the drawing, clustering and abstract representation of different large graphs

from real world domains. This evaluation is described in the case studies in Chapters 5

and 6. These measures, for hierarchical compound graphs, can either be graph theoretic,

which are outlined in Section 3.5 or geometric, which are outlined in Section 3.8.

Briefly these two sets of measures include:

IEP Measure: Implied Edge Precision - graph theoretic.

LCA Measure: Lowest Common Ancestor - graph theoretic.

CoCo Measure: Coupling and Cohesion - graph theoretic.

NNS Measure: Node Neighbourhood Similarity - graph theoretic.

SoSE Measure: Sum of Squared Error - geometric.

MV Measure: Minimum Variance - geometric.

3.5 Clustering Quality Measures for Hierarchical Com-

pound Graphs

A clustering quality measure for hierarchical compound graphs is a function which returns

a number for an entire hierarchical compound graph. This measure, as with all absolute

or ordinal clustering measures, allows the relative quality of a particular characteristic of
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Figure 3.3: Graph with cluster regions and the clustered graph with implied edges a,b,c,d

two different clusterings to be compared. Typically, such a measure is used to evaluate the

quality of one characteristic of a clustering. In this sense these clustering measures can be

thought of as a set of desirable properties of the clustering. In graph drawing, different

application domains can have different types of graphs, which require different sets of

properties of the drawing to be considered to ascertain their relative qualities. Likewise

clustering can have different constraints, which require different properties of the resultant

clusterings to be considered to ascertain their relative level of quality. In Chapters 5 and 6

we use application domain data and highlight the usefulness of certain measures, due to

the combinatorial properties of the graphs.

IEP Measure: Implied Edge Precision

The implied edge precision measure gives a value for how well the implied edge set

of a hierarchical clustering, expresses the underlying connectivity of the graph . This is

a connectedness measure, and is defined as follows: suppose that you have a hierarchical

compound graph defined on with a set of clusters , a rooted tree and an implied edge

set . Suppose that and are connected by an implied edge . The number of possible

pairs of nodes that could give rise to the implied edge e is . For each pair of nodes

and , there may be a path in from to . Implied edges arise from

such paths. In a specific example, for some pair and , there may be no path

from to . For example, nodes and in Figure 3.3 are not connected by a
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path in . However, the clusters and are connected by the implied edge .

We can measure the “precision” of an implied edge as the ratio of the number of actual

paths to possible paths.

This can be formalized as follows: given an implied edge between two clusters and

, the precision of is

(3.5)

where
if there is a path in from to

if not,
(3.6)

and

(3.7)

Consider the example shown in Figure 3.3.

(3.8)

There is a difference between the precision of the implied edges and , although appearing

to have similar connectivity properties, they are actually quite different. The implied edge

suggests that the nodes in cluster are connected to the nodes in cluster ; this

connectivity suggestion only applies to half the nodes in . Whereas, the implied edge

suggests a connection which is more precise, since only one node in does not have a

path as suggested. Clearly, the clustering shown in Figure 3.3 is not a good clustering in that

the implied edgeset does not seem to abstract the underlying connectivity accurately. The

implied edge precision of the clusterings in Figures 3.7, 3.8 and 3.9 is 1. The connectedness
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suggested by all the implied edges shown is valid as there exist possible paths for all node

pairs.

Although these examples represent idealized clusterings, in practice a good clustering

method should produce a very precise implied edge set, if it is to be useful for abstract

visualization or measurement. The is measured on the absolute scale and can be

computed in linear time, using a breadth first search approach.

LCA Measure: Lowest Common Ancestor

The lowest common ancestor measure gives a value for how well the implied edge

set of a hierarchical clustering represents the coupling and cohesion of the clustering.

The intuition for this measure is as follows: an edge of the graph that is deep inside a

series of clusters but yet causes an implied edge connection high up in the cluster tree,

has a larger effect on coupling than an edge that results in an implied edge only between

clusters deep in the tree. A good clustering should have the vast majority of its implied

edges deep in the cluster tree. Here, due to the normalization, the is measured on the

ordinal scale. This is a coupling and cohesion measure, and is defined as follows, suppose

you have a hierarchical compound graph clustering defined on . Given an edge then the

lowest common ancestor of is the deepest internal node of the cluster tree which is

an ancestor of both end nodes of . The pre-leaves of are the parents of the end points of

.

The measure can be formalized as follows: for each edge of denote the depth

of the lowest common ancestor of by and the maximum depth of a preleaf of by

. The measure is defined by:

(3.9)

Alternate formulations include using the average and minimum pre-leaf depth.

For example, consider the hierarchical clustered graph3 shown in Figure 3.4 and the

associated cluster tree shown in Figure 3.5. If the schema for creating the implied edges
3Without the implied edges this is not a hierarchical compound graph.
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Figure 3.4: Hierarchically clustered graph , with four of its edges labeled .

Figure 3.5: The cluster tree for the hierarchically clustered graph shown in Figure 3.4
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of a compound graph is simply the basic connectivity, then the four graph edges labeled

cause implied edges, between various clusters. The outer cluster, which contains

all the nodes and edges of the graph is at level 0 and the cluster containing nodes

is at level 3. Hence the edge between nodes and first causes an implied edge

between a cluster on level and one on level . The nodes of are contained in a level

cluster (that is, the internal node shown in Figure 3.5, is the lowest common ancestor of

the edge .)

(3.10)

Clearly, if an edge causes an implied edge all the way up the cluster tree to the root (that

is, the nodes of have the root node as their lowest common ancestor) then this ratio returns

for since causes maximal coupling and no real cohesion. The edges have the

root node as their lowest common ancestor, so each contributes to the overall measure.

Of course this must be considered with the fact that sixteen edges of the graph have a

value of , five of the edges ((1,3),(2,4),(7,9),(8,9),(8,10)) have a value of , two edges

((14,18),(14,17)) have a value of , and one edge has a value of . Giving an

overall measure for this hierarchical graph clustering of:

(3.11)

This indicates that the cluster tree shown in Figure 3.5 has a moderately good cohesion

factor. A simple inspection shows that if the cluster with nodes were included in the

cluster with nodes this measure would improve to which is a quality improve-

ment, according to this ordinal measure. Although useful for suggesting places where the

clustering can be improved, we are simply interested in this measure to shown how the

implied edges can be used to quantify the overall coupling and cohesion in a hierarchical

compound graph.
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Figure 3.6: Two single level graph clusterings with four clusters each. Where respectively

Figure 3.7: First level clustering of the graph and its induced clustered graph

CoCo Measure: Coupling and Cohesion

One of the most basic absolute scale measures of the quality of a clustering, is the direct

coupling and cohesion quality measure . This measure compares the number of inter-

cluster edges , that is, those inside a cluster boundary, with the number of intra-cluster

edges , that is, those edges crossing a cluster boundary. is also called the cut

size of the clustering.

(3.12)

For example, from Figure 3.6, then measured on an absolute scale is times

better than . The maximum value for is 1, when all the edges are internal and

. The minimum value for is -1, when all the edges are external and , that

is, . It is possible to scale the measure so that measurements lie in the range

, where 0 is a bad clustering and 1 is a good clustering, according to the notion of

coupling and cohesion.
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Figure 3.8: Second level clustering of the graph and its induced clustered graph

The is a single level measure which can be extended to be a hierarchical average

weighted measure , which measures the coupling and cohesion across the levels of

the cluster tree. Given a cluster tree with levels , an equal weighting for each level

(which sum to 1) and a single level coupling and cohesion measure , then we compute

the hierarchical coupling and cohesion as follows.

(3.13)

(3.14)

is the height of the cluster tree. For the two level cluster tree ( ) shown in

Figure 3.8, with a weighting of for each then

(3.15)

If the measure is used with no differentiation between levels then .

For the two level cluster tree shown in Figure 3.9, with a weighting of for each

then

(3.16)

Any intuitive comparison is dependent on an absolute scale and the fact that each level is
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Figure 3.9: Different first and second level clustering , of the graph shown in
Figure 3.8

assigned an equal weighting. A different way to formulate the values is to assign the

lowest and highest levels of the tree values of zero and the rest of the levels are assigned a

normal distribution of about the median level.

NNS Measure: Node Neighbourhood Similarity

The node neighbourhood similarity measure gives a value for how similar the nodes

of a given cluster are, in terms of their relative neighbouring nodes. The , and

measures use between-cluster comparisons whereas this can be thought of as a more

traditional within-cluster measure of clustering quality. The intuition for this measure is as

follows, a given set of nodes in a cluster should be as similar to each other as possible. One

way to determine their relative similarities is to consider their adjacent nodes. The nodes of

a good cluster should have many of the same neighbours, whereas a poor cluster has few.

This is a node similarity measure on the ordinal scale, and is defined formally as follows:

given a set of nodes and edges , a cluster and , then the neighbourhood of

is . Note that the node is included in its own neighbourhood.

The joint neighbourhood of is . The shared neighbourhood of is

. The neighbourhood similarity of nodes and is where is the

size of the shared neighbourhood and is the size of the joint neighbourhood.

Where the number of clusters is , then the node neighbourhood similarity measure
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can be expressed as:

(3.17)

To maximize this measure, a cluster should contain a complete sub-graph, where each node

is connected to every other node hence all the neighbourhoods are equal.

3.6 Methods for Graph Clustering

A graph theoretic clustering is one formed by considering the non “geometric attributes”,

and the structural information of the graph. These structures include biconnected compo-

nents, paths, triangles, and circles of cliques [33, 79, 244, 63] . Graph theoretic clustering

typically requires some a priori decisions to be made before clustering can begin, such as

the number of clusters, the degree of uniformity, the maximum cluster size, or the required

cut-size [8, 64, 79, 192, 223]. This form of the clustering problem is closely related to the

“graph partitioning” problem [30, 80, 83, 145, 154, 274]. Broadly speaking graph parti-

tioning is a simpler form of graph clustering that does not consider any attributes of the

nodes, and has two main objectives:

to split the graph into a number of sub-graphs with low coupling

to achieve a degree of uniformity in sub-graph size.

Graph partitioning is often used as a pre-processing step in the field of parallel com-

putation, when the computational problem can be modeled in terms of a graph [223, 275].

For parallelization, the partitioning effort is generally two-fold, first to identify areas of

concurrency in the problem and second to divide the problem so as to “load balance” the

effort across a number of processing units. Communication between processing units is

expensive in terms of how long it takes, regardless of the architecture, so the first objective

is to reduce the overhead in communication between processing units [61]. The second

objective aims to distribute the computational effort evenly across the processing units so

as to maximize throughput and hence reduce processing time [223].
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Examples of graph theoretic clustering, to partition a large computation modeled as a

graph include; matrix ordering [153], VLSI design [149], computational mechanics [10],

parallel partial differential equation solvers [58, 285], parallel Euler equation solvers [56],

physical mapping of DNA [152, 153], and graph drawing [113, 115, 249, 283]. This area of

clustering is rich with methods and techniques as described in a book on decompositions

of graphs by Bosak [30]. There are two excellent survey papers, although not entirely

disjoint, on graph clustering from Elsner [80] and Pothen [223]. Falkner et al. [83] give a

comparative analysis of the upper bounds for several graph partitioning algorithms, for a

variety of graph types, both simulated and domain specific. This approach can be taken to

extremes and the usefulness of parallel partitioning solvers, to aid in partitioning problems

for parallelization has been questioned by Hendrickson [120].

Point data can also be modeled in terms of a graph, by inducing edges between oth-

erwise independent data elements. One such approach is based on creating a “minimum

spanning tree” of the point data, which induces a graph. This graph can then be used with

a variety of graph theoretic clustering methods, to cluster the underlying point data set (see

[8, 30, 65, 140, 192].

Currently, most graph clustering is a form of basic graph partitioning which does not

consider attributed nodes. Some of the most important graph theoretic clustering methods

include:

Node similarity based algorithms

Kernighan-Lin and variant algorithms

Graph growing algorithms

Spectral -section algorithms

Multilevel partitioning algorithms.

Most graph theoretic clustering methods can be specialized with domain specific informa-

tion, typically this information is used by similarity measures in the clustering process.

These domain specific specializations are further discussed in [80, 223] and are outside the

scope of this thesis.
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We now briefly describe the relevant graph theoretic clustering methods which relate

to the formation of hierarchical compound graphs.

3.6.1 Graph Growing Methods

Graph growing is a clustering approach that forms sub-graphs based on expanding node

sets. Graph growing methods typically select a starting node and add nodes to it until

the sub-graph (cluster) is big enough. The addition of nodes is generally achieved by

walking the graph to selectively add nodes to the current cluster. These methods, although

conceptually quite simple, have very fast running times and can often find good clustering

solutions, or at least provide good starting points for other more sophisticated methods. A

breadth first graph growing method is incorporated into MeTiS [151] and ParMeTis [154]

which are libraries of multilevel methods similar to those described in Section 3.6.4.

Basic greedy graph growing methods, add nodes based on information immediately at

hand without worrying about the effect of these decisions later. Typically these methods

start by randomly selecting a node which is assigned to a cluster. The next adjacent node

to get added to this cluster, should be in some sense, the most promising choice based on

some “selection function”. A selection function simply gives a score to a node based on a

rule such as, has the lowest degree, maximizes the decrease in cut-size, or minimizes the

increase in cut-size. Once the cluster size reaches some a priori limit or no suitable node

can be added to the current cluster, a new cluster is formed and a starting node is selected.

This process continues until all the nodes are in clusters, resulting in a clustering of the

nodes of the graph.

A good example of a greedy graph growing clustering method (GGGC) is that of Gerl-

hof et al. [104] which is an agglomerative method derived from Kruskal’s algorithm for

finding a minimum spanning tree [35]. This method initially assigns each node to a single

cluster and inserts all the edges into a list sorted by weight. The weight is derived from

the sum of the degrees of the end point nodes of the edge. Each edge is visited

in descending order with and . If the end point nodes of the edge are in

separate clusters, that is, and , where is the optimal cluster size



3.6 Methods for Graph Clustering 67

decided a priori, then the two clusters are joined, otherwise the edge is discarded [105].

This approach can be further improved by a “bounded look-ahead” and a “new-chance”

edge list. The bounded look-ahead is used to detect situations where it is advantageous

to reject the current edge and to consider other edges first. The use of a new-chance edge

list results in edges which are rejected in the look ahead step, always being re-considered

before the clustering finishes. These heuristics give the basic method a limited foresight

and memory. Empirical evaluations, of these heuristics, have shown then can produce high

quality clusterings [35].

These methods are more sophisticated than the Farhat-algorithm [84], which selects the

starting node in a greedy fashion and then proceeds to grow until the required cluster size

is formed. A greedy region growing method is also incorporated into ParMeTiS [154]. A

variant of graph growing is the Markov cluster algorithm which simulates flow in a graph

by first relating it to a Markov graph. In this method, graph flow is alternately expanded

and contracted based on the expectation that flow between dense regions which are sparsely

connected evaporate, resulting in a high quality clustering [63].

3.6.2 Kernighan-Lin variant Methods

No discussion of graph theoretic clustering methods would be complete without mention-

ing the well known Kernighan-Lin (KL) graph partitioning algorithm [159]. This is one

of the earliest graph partitioning algorithms and although now over thirty years old, this

method is still important and widely used due to the quality of the partitions produced.

Given one of the areas this thesis concerns itself with is program comprehension for re-

verse engineering, it is worth noting that the KL algorithm was pre-dated by Kernighan’s

seminal work on graph partitioning problems related to program segmentation [158].

The KL algorithm is not directly applicable to clustering large graphs due to its in-

herently large run time complexity which is approximately . KL has spawned

a large number of variants [41, 87, 145, 267] and is often used by other graph clustering

methods, such as the multilevel method described in Section 3.6.4 which are suited to large

graphs.
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The clustering method developed by Kernighan and Lin [159] was motivated by the

difficulties involved in optimizing the placement of circuits onto a set of printed circuit

cards. Each card contains a sub-set of circuits and the goal is to minimize the number of

connections between circuits on different cards. Clearly this is just a form of clustering

as described in Section 3.3, however until the development of the KL algorithm, the opti-

mization of circuit card layout was a manual task requiring thousands of man hours which

was a costly, tedious and error prone effort.

The KL algorithm starts with an initial set of clusters and iteratively improves them.

In their original paper the initial clustering was random but nowadays the algorithm is

used to improve the quality of clusterings found by other computationally inexpensive

methods [80, 151, 154, 223], such as those described in Sections 3.6.4 and 3.6.1. The KL

algorithm has been extensively surveyed in both research papers and books. We propose

only to give a brief description here and refer the reader to [80, 159, 223] for further details.

This description is based on having two initial clusters and . The KL algorithm

makes iterative improvements by swapping sub-sets of equal numbers of nodes between

the two clusters to reduce the cut-size. At the beginning of each iteration the diff-value for

each node is computed. This is the amount the cut-size decreases if the node is moved to the

other cluster. The gain-value for a pair of nodes and is the amount the cut-

size changes if we swap into and into . The gain-values determine what particular

sub-set of nodes should be swapped. As described, this is basically a greedy algorithm, that

attempts to maximize the reduction of edge cut size at each iteration. The power of the KL

algorithm comes from the fact that it also contains an inter loop that specifies some swaps

must be made a number of times, even if these swaps result in negative gains, that is, an

increase in edge cut size. The hope is that a few negative gains avoids local minima in the

cluster space by reaching a state where more significant edge cut reductions are possible,

thereby reducing the overall edge cut size in the long run. At each iteration, the best

clustering found so far is recorded and if a series of steps with such negative gains don’t

improve the cut size, the best clustering can be restored. The acceptance of negative gains

means that the KL algorithm isn’t a straight forward greedy method. It typically results

in good quality clustering albeit at the cost of which has since been refined
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to by Fiduccia and Mattheyses [87]. As noted by many authors [80, 87, 151, 152,

153, 223], the KL algorithm is useful in a local post-processing phase, to further reduce

the cut-size of good initial clustering produced by another faster method.

3.6.3 Spectral Bisection Methods

Spectral -section algorithms, for example a spectral bi-sectionmethod, operate on an aug-

mented mathematical representation of the graph, not directly on the graph itself. Spectral

-section algorithms take the following approach:

I Consider the graph undirected so it has a symmetric matrix representation.

II Create the Laplacian , which is almost the same as the adjacency matrix ,

except the diagonal entries are equal to the degrees of the nodes.

III Compute the second eigenvector of . This is used in a relaxed problem which

approximates the NP-complete bisection problem.

IV Partition the nodes into two sub-graphs and based on the median eigenvector

component.

V The two sub-graphs need not be of equal size. Then, and .

This is called the m-partition, where the th largest or smallest component of the

second eigenvector is used to determine the partitions [45].

This method can be extended to a recursive spectral bisection (RSB) which is a heuristic

technique for finding a recursive minimum cut graph bisection [45]. For graph clustering

and partitioning considerable study has gone into eigenvalues and eigenvectors [6, 47, 53,

166, 196, 224, 225]. Notable surveys on this area are by Mohar [196] and Merris [190,

191].

3.6.4 Multilevel Methods

A multilevel method clusters (partitions) a representative graph, called the “coarsened

graph”, which is much smaller than the underlying graph, called the “fine graph”. The
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clustering is then projected and modified back though a series of increasingly “finer”, that

is, more detailed graphs, until a clustering of the original underlying graph is formed, see

Figure 2.25. The process of creating the smaller graphs, the coarsened graphs is referred

to as coarsening the graph, such as the series of graphs to shown in Figure 2.25.

The coarsening typically halts when the coarse graph has a few hundred nodes. The initial

partitioning is then formed from the smallest coarse graph, for example the partitioning of

in Figure 2.25.

To cluster the coarsest graph, a variety of clustering methods can be used; these meth-

ods include: spectral, Kernighan-Lin, breadth first region growing and greedy growing

methods. The initial clustering of is used to generate a clustering of by reversing

the coarsening, that is uncoarsening the graph. The approximate clustering of is then

refined, for example by moving or swapping nodes to reduce the cut size. This process is

then repeated for each uncoarsening step, until a refined clustering of the original (finest

graph) is produced.

Although multilevel methods are relatively new, they are popular due to their simplic-

ity, computational efficiency and ease of implementation. These methods have been suc-

cessfully parallized to handle much larger graph partitioning problems. Different methods

implement a range of coarsening steps such as neighbourhood growing, maximal match-

ing [62], heaviest edge matching and random matching [150, 152, 153].

Recall that multilevel partitioning schemes have also recently been used in graph draw-

ing to provide significant performance improvements to some classical layout methods [98,

116, 283], as we discussed in Section 2.2.7.

3.7 Models for Geometric Graph Clustering

Typically data analysis is concerned with the exploration of sets of point data. In such data

sets each element has multiple attributes. Viewed geometrically these attributes allow the

points to be represented in n-dimensional space. Thus a similarity measure for point data

can be based on Minkowski distances; for example the Euclidean distance between points

is often used to determine their relative similarities. Points that are closer in Euclidean
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space are somehow more similar than those that are far apart. Generally, this similarity

measure is well suited to aid in the exploration of patterns which are based on the distance

relationships within a set of points. This approach implies that the n-dimensional space is

isotropic which means such measures are not invariant to linear transformations.

A more general approach is to use a geometric similarity function . Where the

function is symmetric and returns a large value if and are similar. However this level

of generality comes at a high cost; for example, formulating a robust similarity measure

for abstract categorical data or data of high dimension is often impractical [178].

A graph with an assigned geometry is “spatial data” consisting of points, lines, poly-

lines, and polygons in two dimensions and surfaces or volumes in three. The efficient

and scalable representation of spatial data is important in a variety of applications in soft-

ware visualization [12, 37, 142, 161, 211], reverse engineering [188, 263], graph draw-

ing [219, 98, 237, 296], computer graphics [13, 22, 172, 252, 253], computer anima-

tion [13, 59, 266], image processing [253, 266], and computational geometry [20, 21, 185,

226, 252, 253].

Many applications in these areas rely on the ability to manipulate spatial data. As the

storage capacity and speed of available computing technology increased dramatically over

the past 30 years, applications that use larger models of spatial data were called for. Repre-

senting such large complex spatial data models using naive data representation techniques

proved unsuitable. Similar to the difference between searching a file system based on flat

files and one based on a database, often the primary weakness of a representation of a

model is that it does not scale well to handle larger amounts of data.

One such model for spatial data representation is based on the recursive decomposition

of space to form a hierarchy of regions. These divide and conquer methods are referred

to as hierarchical space data structures. Examples of such hierarchical data structures

include quadtrees [88, 299], kd-trees, bintrees, PR-trees [252, 253, 254], and binary space

partitions [21, 66]. Hierarchical data structures allow an application to focus on subsets of

data leading to a scalable representation with improved execution.
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3.7.1 Hierarchical Space Decomposition

Space decomposition is the partitioning of geometric space into smaller regions. One such

method for partitioning planar space is referred to as polygonal tiling [253, 254], or tessel-

lation [21]. Each partition can be represented in terms of equations of lines, which define

the polygonal perimeter of the partition. Each partition of space is referred to as an atomic

tile, since it is the finest granularity representation of a unit of space. A regular tiling

has polygonal tiles with edges of equal length and equal interior angles, see for example

Figure 3.10.

A hierarchical space decomposition is a recursive partitioning of space, where the tiling

used is an infinitely repetitive pattern and is infinitely decomposable into an increasingly

finer tiling. These two constraints satisfy the earlier definition of a hierarchical clustering.

If the space contains a point set, then a hierarchical space decomposition induces a hier-

archical clustering of the point set. Further, if the geometric space contains the drawing

of a graph, then the hierarchical space decomposition induces a hierarchical clustering of

nodes of the graph and hence a graph theoretic clustering, this is discussed in more detail

in Section 3.9 and Chapter 4.

A further constraint on the tiling is that of “similarity”. A similar tiling exists when a

tile at any level of the hierarchical space decomposition, has the same shape as the root

tile. For example you cannot have a similar tiling based on hexagons as in Figure 3.11,

because tiles must either overlap or miss parts of space, thereby invalidating the partition-

ing constraint. Clearly other types of space decomposition are possible, such as a recursive

Voronoi decomposition of space. Such a partitioning, is polygonal in nature but typically

is neither regular nor similar. Voronoi diagrams take time per level of the hier-

archy to compute [91].

A very general class of hierarchical space decompositions are based on “quadtrees”. In

general a quadtree is a data structure used to recursively group pixels and a octtree is one

that recursively groups voxels. Typically this grouping takes place in a top-down fashion

rather than a bottom up agglomerative manner. To create a quadtree, a partitioning method

recursively divides space in a regular, similar and polygonal manner.
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Figure 3.10: Regular polygonal tiling
of a point set in the plane. Figure 3.11: Hexagonal non-regular tiling.

We are concerned with defining quadtrees that are used for the storage of large ge-

ometrically attributed graphs, not images. Each node (vertex) has a location, and in its

simplest form each edge route can be derived from its associated node’s locations. In this

thesis we consider a quadtree to be is a rooted tree where every internal cell, referred to as

a twig, has a maximum of four daughter cells. Every internal cell represents a square of

two dimensional space (a tile), with the root cell representing the entire space, as shown

in Figure 3.12. Each daughter cell represents at most of the space of its parent, that

is, a quadrant of space, hence the name quadtree. This differs slightly from the classical

definition, where if a cell is classed as internal then it has exactly four daughter cells each

of which is classed as empty, full or partially full. The regions of space which have been

greyed-out in Figure 3.12, are not daughters of their parent cells, instead they simply do

not exist in our quadtree structure. This definition is very similar to the definition of a PR

Quadtree [254], except here all the nodes are initially known.

The classical definition of a quadtree stems from the image processing field, which

uses quadtrees to aggregate data having identical or similar values, rather than point sets.

In general the construction of a quadtree can be differentiated on the following bases:

Type of data: Is the data in point format or is information based on regions or
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Figure 3.12: Quadtree decomposition of a point set in the plane.

volumes?

Decomposition rules: Are the daughter cells regular polygons and is the decompo-

sition a similar tiling, that is, are the polygons the same shape on each level?

Resolution: How many times is the decomposition process performed? Is it based

on an a priori selection or based on the input data?

We use quadtrees to form hierarchical clusterings of space which in turn are used to

form hierarchical compound graphs. Therefore, our quadtree construction is based on:

Type of data: A graph drawing where nodes have unique - and -point locations.

(centroids of the labeled square as shown in Figure 3.12)

Decomposition rules: A simple split of the parent square cell into smaller square

cells that are regular-polygonal, thus inducing a similar tiling.

Resolution: Nodes are spilt until each leaf cell contains only one node. This is a

maximal decomposition.
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The daughters of the root cell are labeled NE, NW, SW and SE to indicate which

quadrant they correspond to; SW stands for the south-west quadrant (or the bottom left

quadrant in simpler terms). The recursive splitting continues as long as there is more than

one node (point location) in a square, so that each leaf cell contains at most one node (point

location) of the graph. The split is based on the median x and y lines.

Suppose that is a set of points. A quadtree for consists of a rooted tree , a set

and a region for all nodes of , such that:

If is the root of then and is defined as follows. Suppose that the

minimum/maximum extent for the x/y values of the points in are , ,

, . Then is the minimum enclosing square centred at:

(3.18)

If is a node of such that then is a leaf.

If is a node of with then consider the quadrants , , , of .

If ,then has a daughter with and

1 Lemma (Depth of a Quadtree)

The depth of a quadtree for a set of nodes in the plane is at most , where c

is the smallest distance between any two points in and s is the width of the root cell.

2 Lemma (A quadtree of depth d storing a set of nodes has nodes)

Each node leaf in the quadtree contains precisely one node. Further, twigs have at least

two daughters. Thus the total number of nodes is at most .

Classical quadtrees were developed by Finkel and Bentley in 1974 [88]. Although

over ten years old, the surveys and books by Samet [252, 253, 254] still provide the most

comprehensive review and analysis of tree based data structures and their application. A

quadtree is the simplest form of a data structure based on a recursive decomposition of

space. Due to its simplicity and ease of implementation it is used in a wide variety of

the application domains that deal with spatial data. Quadtrees were motivated by the need

to reduce the storage space required for two dimensional images and three dimensional
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Figure 3.13: Nonotree space decomposition and data structure

models. However, as we show in Chapter 4, the reduction in computation and visual com-

plexity are often more dramatic and of greater importance than storage space reduction for

information visualization.

One of the major contributions of this thesis is the new application of such hierarchical

data structures to the creation of hierarchical compound graphs and their use in the lay-

out, abstract representation, and measurement of large graphs. This thesis also introduces

several variants of the quad and octtrees, namely the general family of orthogonal or

decompositions. For example, the nonotree shown in Figure 3.13 can be used in the

abstract representation and drawing of large graphs.

3.8 Quality Measures for Geometric Graph Clustering

A geometric graph clustering quality measure gives a quantitative measure to the “good-

ness” of a particular clustering, in terms of it geometric attributes. Such a measure is a

function that returns a value that can be used to compare the relative quality of two dif-

ferent geometric clusterings , of the drawing of a graph . Graph theoretic clustering

considers the non-geometric attributes of a graph. However, if the graph can be viewed

geometrically, and each one of its geometric attributes can be mapped to an individual di-

mension, in -dimensional space, then each node of the graph can be considered a point in

-dimensional space.
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Classical geometric clustering is based on the statistical analysis of the distribution of

such -dimensional point sets. Based on this analysis, “clouds” or clusters of points are

identified and grouped. However, determining exactly which type of statistic to measure

a-priori is a difficult and highly domain dependent issue. Assuming the data has a simple

normal distribution, may lead to the discovery of a good natural clustering of the data

set but it may also lead to gross inaccuracies in the interpretation of that data [65]. The

difficulty in this clustering approach is knowing the structure of the data before clustering

begins.

Regardless of the clustering scheme used, quality measures based on measuring dif-

ferent geometric aspects of the clusters can be formulated. Typically, such measures are

used to evaluate the quality of one geometric characteristic of a clustering. These measures

can be extended to apply to hierarchical compound graphs. Examples of such measures

include:

SoSE Measure: Sum of squared error.

MV Measure: Minimum variance.

A geometric cluster is typically described by a representative point in the cluster. The point

is typically some common centre point, measured according to some distance function. The

common point is typically the centre of mass of the point set but it may also be the most

representative point. The distance measure used can be a simple Euclidean measure or a

Manhatten distance.

SoSE Measure: Sum of Squared Error

The sum-of-squared-error measure is one of the most basic geometric measures used in

determining the clusters of point data [140]. It can also be used to measure the relative

quality of two different clusterings. This quality measure is based on the following intu-

ition, a set of point data in a cluster should be uniformly close to the representative point

used to describe this cluster in an abstract manner.

This is a geometric cohesiveness measure, and is defined as follows. Suppose you have

a hierarchical graph clustering defined by , a set of clusters and a rooted tree . Then



3.8 Quality Measures for Geometric Graph Clustering 78

is the number of graph nodes in a given cluster . Cluster has a mean for

its node set. Summing the squared differences between the mean for each cluster and the

points in the cluster, gives a measure for the overall level of cohesion in that cluster. One

would expect a random grouping of nodes to result in a very poor quality measure, whereas

dense localized groups give much better results.

This can be formalized as follows, given a cluster the mean is:

(3.19)

and the sum of squared errors is:

(3.20)

This measure can be applied to the entire tree , either by considering only the actual

node locations a cluster contains, regardless of the level in the cluster tree, or the clusters

of clusters may be considered the elements of the clustering. This is a measure on the

ordinal scale, for use in cross comparison, it must be normalised since it simply represents

the total squared error involved in representing this set of nodes by increasingly more

abstract pseudonodes.

MVMeasure: Minimum Variance

The measure is often modified to encompass a more general class of similarity

measure . The minimum variancemeasure compares all the inter-node distances between

points in a cluster. As with the it can also be used to measure the relative quality

of two different clusterings. This quality measure is based on the following intuition, a

set of point data in a cluster should be uniformly close to each other and not just a single

representative, as in the measure.

This is a geometric cohesiveness measure, and is defined as follows, averaging the

squared differences between all pairs of nodes in a clustering, gives a measure for the

overall level of cohesion in the clustering. As with the measure, a random grouping
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of nodes results in a very poor quality measure, whereas clustered points give better quality

results. This measure can be formalized as follows:

(3.21)

and the sum of squared errors is:

(3.22)

Finally, as with the this measure is on the ordinal scale and must also be normalised

for cross comparisons.

3.9 Methods for Geometric Graph Clustering

Geometric graph clustering is strongly related to “data clustering”. Data Clustering is the

grouping of point data into groups according to some labeled set of patterns. As such, a

graph that has been drawn in two or three dimensions could be clustered as if the nodes

were simply point data.

Some of the most important geometric clustering methods, most of which disregard the

connectivity information include:

Distance measure based algorithms

Coordinate Bisection/Inertial Bisection

Partitional algorithms/k-means

Induced spanning tree of point set.

The area of data clustering typically deals with high dimensional data. Data elements

having 150-200 attributes that can be included in a similarity measure are not uncommon.

This thesis concerns itself with the general layout, clustering, and abstract representation

of simple graphs. As such, further discussion of data clustering based on a data of high

dimension is outside the scope of this thesis.
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3.9.1 Coordinate/Inertial splitting

Coordinate splitting is a divisive method that employs the geometrical coordinates of the

nodes in two or three dimensions to compute a clustering. Typically, it involves finding

a plane parallel to the fixed coordinate x-,y- or z-axis that divides the graph into two sub-

graphs. If the two sub-graphs should have an equal number of nodes then this is called

coordinate bisection. Regardless of the relative size of the sub-graphs, the dividing plane

is orthogonal to one of the axis planes. This method can be applied recursively to pro-

duce a hierarchical clustering in the form of a binary tree, which is a balanced tree in a

coordinate bisection. Creating this type of balanced recursive node grouping with x- and

y-axes is effectively the same as creating “bintrees” in image processing [253] and also

relates to quadtrees for representing point data. Although in the worse case the quality of

the partitions formed may be poor, this is a computationally cheap method that produces

reasonable clusters in practice [80, 106, 223].

Different rotations of the node set in two or three dimensions can result in very different

clustering than if fixed axes are used. This is a weakness of this clustering method but it can

be over come by the “Inertial Bisection” method [212]. An Inertial Bisection method first

determines the centre of mass and the principal axis of inertia, that is, the axis of minimum

angular momentum. This forms the “adjusted axes” which are independent of overall node

rotation. Another variant of this method, computes the separator of the node set using a

circle rather than a straight line.

In this thesis we show how variants of this form of decomposition are useful not only

for clustering the nodes of a graph but also for improving the performance of a classical

graph layout method which results in drawings that can be viewed and explored across

multiple levels of abstraction.

3.9.2 Partitional/k-means

The k-Meansmethod is one of the most commonly used geometrical clustering techniques.

In k-Means, the coordinates of the nodes, in -dimensional space, are used to compute a

clustering based on some similarity measure. Such a similarity measure is typically based
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on squared Euclidean distances. The k-Means method is popular due to its simplicity, ease

of implementation, time complexity of (where is the number of clusters), and the

fact that it often returns good clustering results.

The k-Means method proceeds as follows:

I First randomly select nodes from the graph that are used as the initial cluster cen-

tres. Or select random points within the hypervolume containing the graph drawing

II Assign each node of the graph, to its closest cluster centre

III Recompute the cluster centres, using the centroid of current membership

IV Repeat the assignment process if the “minimization criterion” is not met.

The minimization criterion is used to determine whether there has been a minimal or zero

change in the state of the clustering. The state of the clustering can be measured in terms

of a sum of squared error criterion ( ) which has a similar formulation as the

measure shown in 3.20 . The centroid of a particular clustering is and is

typically expressed as:

(3.23)

The k-Means method is sensitive to the initial clustering and may converge to a local

minimum if the initial clustering is poorly selected [140]. Numerous specializations to the

basic k-Means algorithm have been developed [4, 8, 192, 259] to overcome the problems

associated with selecting an initial clustering. Several of these methods also incorporate a

thresholding scheme for the split-push and merging of clusters, such as ISODATA [192].

Recent methods, restrict the centroid to be a node of the cluster, the so called medoid

of the cluster [140].

3.10 Geometric Hierarchical Graph Clustering Methods

A graph does not constitute spatial data as it simply contains nodes and edges (no ge-

ometry). However, an attributed graph, where some of the attributes are geometric, does
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Figure 3.14: A graph drawing overlaid with a hierarchical space decomposition.

Figure 3.15: The inclusion tree of a Hierarchical Compound Graph, of the graph and space
decomposition shown in Figure 3.14
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constitute spatial data. Graph drawing algorithms synthesize geometries for graphs with-

out geometric attributes. Once the graph has an associated geometry, then a hierarchical

geometric space decomposition method can be used to recursively cluster regions of space

containing the node locations, such as that shown in Figure 3.14. This recursive clustering

is a hierarchical clustering of regions of two or three dimensional space.

Given a graph drawing, then any hierarchical space decomposition induces a hierar-

chical graph clustering, such as that shown in Figure 3.15. This hierarchical geometric

clustering, which can be measured with geometric measures, induces a graph theoretic

clustering, which can be measured with theoretic measures. The graph theoretic cluster-

ing is also used to form the hierarchical compound graph associated with this hierarchical

geometric space decomposition.

We aim to use computationally inexpensive hierarchical space decomposition methods,

such as quadtrees as shown in Figure 3.14, to cluster the nodes of a large graph drawing.

These hierarchical clustering are then used to create a hierarchical compound graph with

implied edges. This compound graph is then used in our FADE paradigm to draw and

abstractly represent large graphs using “visual précis”.

3.11 Visual précis

Here we address the effective use of screen real estate and the computational effort involved

in rendering large graphs. We use the hierarchical compound graph model to support our

notion of a “visual précis”, which is simply an abstract visual representation of the un-

derlying graph. Our “visual précis” are related to mesh generation in the field of surface

modeling [13, 170, 171]. This relationship comes about because the space decomposi-

tion methods, such as quadtrees, are used in both the formation of hierarchical compound

graphs and approximate mesh generation. However, in surface modeling a mesh point is

an approximation of some point in space. In a “visual précis”, a region of space defines

a cluster, which is an abstract representation of a set of relational data elements and their

interrelationships.

Formally, a visual précis is a two or three dimensional projection of a précis extracted
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Figure 3.16: A hierarchical inclusion tree of a 168 node graph.

from a hierarchical compound graph. Recall that, a précis consists of a set of clusters,

implied edges, real nodes, and real edges. A précis may contain any combination of these,

as long as it represents an abstract view of the entire underlying graph. Précis, which

primarily contain clusters and implied edges are called high level précis. In a précis, the

only graph edges are between nodes which are both included in the précis. All other edges

are included as implied edges or are abstracted into clusters. The definition of a précis can

apply to any type of inclusion tree regardless of its arity. As a result, regardless of the shape

of space decomposition used to form the hierarchical compound graph, these visual précis

drawing techniques can be applied.

Unless otherwise stated, an implied edge exists between two clusters and when at

least one real edge connects nodes in the two clusters, that is, and .

An implied edge can also exist from a cluster to a single node , where and

.

The hierarchical inclusion tree shown in Figure 3.16 represents a possible clustering

of the nodes of a graph. Here the root cluster contains four clusters with , , and

nodes respectively. We will make reference to this inclusion tree in the description

of our abstraction and viewing techniques. Note, this tree is not a hierarchical compound

graph as it only represents the inclusion tree of the hierarchical compound graph, without

reference to edges or the implied edges . An example of a hierarchical compound graph

is shown in Figure 3.2.

The viewing methods introduced in this thesis, to visualize précis extracted from hier-

archical compound graphs, include:
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Event Horizon views

Horizon views

Cut views/Multi-cut views/Distortions

Surface Views

Bell Curve Views.

An event horizon is simply a précis which consists of nodes and clusters from any level

of abstraction. As such, an event horizon view is our general term for the clustered graph

drawing of a précis. A surface view is our term for a three dimensional projection of an

event horizon. Such surface views are three dimensional tree-maps. In a surface view the

level of abstraction for a particular node or cluster, is typically rendered as a colour on a

simple ”hypsometric scale”. A hypsometric scale is a a scale in the margin or cartouche of

a map that shows which shades or colours represent which elevations.

The visual weight of a particular visual précis, is the percentage of clusters, nodes,

implied edges, and edges drawn as compared to the total number of nodes and edges in the

graph. A visual weight cutoff is simply a user defined percentage used in determining how

many clusters, nodes, edges, and implied edges can be included in a given précis. Other

more sophisticated methods for determining the visual weight cutoff can include measuring

the processor speed, the graphics card capacity, the screen size, and monitor resolution.

Précis which include many high level clusters and implied edges, allow us to draw

visual précis which reduce the visual weight, complexity, and rendering time for the vi-

sualization quite dramatically. This reduction does not come free since we are removing

detail and showing only approximations. In discussing each type of view, we note the

possible effects of these reductions.

Horizon views

Intuitively a horizon view is the extent to which the user can see into the hierarchical

compound graph. It is a level based view, which is the simplest form of abstraction using

context sensitivity, elision, and user control techniques. Hierarchical compound graphs
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Figure 3.17: Two Horizons of a Graph, as a Multilevel Drawing.

Figure 3.18: Nodes and clustered nodes (of ) in a 4th level horizon view
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formed using standard recursive space decomposition techniques, typically do not have a

uniform node depth; that is, the distance from leaf node to the root, as shown in Figure 3.18.

Such space decomposition techniques can be augmented to ensure that all the nodes of the

graph exist only at the bottom of the tree, by repeatedly clustering shallow nodes until they

are of the same depth as the deepest nodes.

Instead of this potentially costly algorithmic approach, we prefer to define our views in

line with the existing recursive space decomposition methods. As such, our horizons are

précis, which contain clusters at the same level of abstraction (depth) along with real nodes

which exist at this level of abstraction or higher. Real edges between nodes in the précis

are included. Edges between nodes in different clusters are also included as implied edges

and edges between real nodes and clusters are included as implied edges.

The level of abstraction (depth) for a particular horizon view can be determined in

several ways; these include: interactive selection, a priori user selection, or selection based

on some visual weight cutoff. Typically, high level horizon views have a much smaller

visual weight than the underlying graph drawing. Here, the cutoff can be used to determine

the lowest level horizon drawing permissible. Figure 3.19 shows an underlying graph of

400 nodes overlaid with a hierarchical space decomposition to the third horizon level. The

root cell is split into four quadrants (level 1). Each of these is split into a maximum of four

quadrants (level 2). Each of these quadrants is again split to form level 3. This level defines

a précis of clusters implied edges and nodes which can be extracted from the hierarchical

compound graph.

There are several ways to draw a visual horizon defined by a précis. Figure 3.19 shows

both a two dimensional “tree-map” and a “clustered graph drawing” of the horizon defined

above. A tree-map consists of squares showing the relative densities of nodes in a particular

region. A clustered graph drawing shows each node and cluster along with the implied

edges, and edges between them.

Typically there are many visual horizons that can be extracted from a hierarchical com-

pound graph, as shown in the three dimensional drawing in Figure 3.20. The multilevel

representations of Feng et. al [73, 86], showed several ways to visualize the levels of a

clustered graph in a single multilevel representation. Here, the précis extracted in the form
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Figure 3.19: 400 node graph, and a horizon, drawn as a tree-map with hypsometric tints and as a
clustered graph.
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Figure 3.20: Different horizons and their drawings and a multilevel representation view.
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of visual horizons are used to reduce, rather than increase, the amount of graphical infor-

mation on display. The goal here, is to show how the visual horizon drawings can reduce

the visual weight, thereby making them suitable for large scale graph drawing, rather than

single multilevel representations.

The top left image in Figure 3.20 shows a graph of 93 nodes and 111 edges drawn in

two dimensions. The top right image shows a multilevel representation of two horizons

and along with the underlying graph drawing , similar to those described in [86].

In the multilevel view, each drawing is embedded in a transparent plane. Clearly is

more abstract than as it uses fewer clusters and implied edges to represent the overall

structure of .

The clustering that induces the horizon is shown in the middle left of Figure 3.20.

Our visual horizon drawing of (overlaid with the space decomposition information) is

at the top on the middle right. The clustering that induces the horizon is shown on the

bottom left of Figure 3.20 along with the visual horizon drawing on the bottom right.

Single high level horizon drawings are useful as they can provide an initial simplified

view of the structure of large graphs. However, they can also be used in interactive systems

where users can decrease the depth of the horizon. This in turn results in less detail being

shown which provides a more abstract view of the data. Alternatively, they can increase

the depth of the horizon to show a greater amount of uniform detail.

In an interactive system some form of animated visual transition effect is required as

the user moves from one level to the next. We identify three possible transition techniques:

Fading: The nodes, clusters, implied edges and edges are faded in or out as appro-

priate when moving between horizon levels.

Animation: Moving to a deeper horizon, the nodes and clusters are animated as

moving from their parents location to their new locations. Moving to a lower horizon

has the opposite effect.

Combination: Nodes/clusters are faded in and then animated to their final locations.

Using a level view, it is possible to reduce the visual weight of the visualization quite

dramatically. Taking a horizon a few levels up from the deepest nodes, often reduces the
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Figure 3.21: On the left a graph drawing of 1000 nodes and 1997 edges. On the right a high level
view with 31 nodes and 33 edges.

visual weight by over 90%. As a technique for initial visual inspection of the overall

structure of a large graph, horizon viewing seems promising. For example, the horizon

drawing on the righthand side of Figure 3.21 represents a 98% reduction in visual weight,

yet the overall structure remains clearly visible.

However, this drawing technique clearly has some drawbacks. If the user wants to

inspect a node that happens to be at the very lowest level of the hierarchical compound

graph, then the entire graph must be drawn according to this drawing technique. This

brings us back to the original problems of rendering time and the effective use of screen

space.

For approximate or overview drawings, horizon views clearly reduce the visual weight

and computational effort in creating the picture. However, for interactive data exploration,

this technique can be used initially and then in conjunction with other techniques described

here.
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Figure 3.22: Simple cut from selected node to root of the tree in Figure 3.16

Figure 3.23: A précis view of the inclusion tree, with the sub-tress elided, of the cut in Figure 3.22

Cut views

Graph visualization systems are typically used in exploratory data analysis. A common

operation is to search for, or query the location of a particular node in the graph. As noted

above, to visualize a particular node the horizon must be deep enough to encompass it. This

often results in the drawing of large amounts of graphical information, simply to see one

node at the required level of detail. Here we introduce techniques, that use the inclusion

tree to support the creation of visual abstractions for such queries and searches.

A cut is a précis through a hierarchical compound graph from a single node. A cut is

used to shown the detail, local- and global-context of that node. The detail is given by the

node itself, the local context is given by clusters towards the bottom of the inclusion tree

(close to that node) and the global context is given by clusters towards the top of the tree.

A cut method creates a précis from a single node. Cut methods can be formulated in

different ways, with the most basic cut method shown in Figures 3.22 and 3.23. Figure 3.22

shows a selected node and a cut from that node. Here the cut method forms the précis by
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Figure 3.24: Straight cut from a single
node to the root of a 5000 node graph

Figure 3.25: Underlying drawing of
the 5000 node graph

marking the path from the node to the root of the inclusion tree as open. Edges from

to other nodes, whose parent clusters are marked as open, are included in the cut. Nodes

or clusters, whose parents are marked as open and implied edges between those clusters or

nodes are included in the cut. This method is called a straight cut and Figure 3.23 shows

an abstract view of the clusters and nodes of the cut in terms of the inclusion tree where

sub-trees are elided away. The drawing of a cut is useful for showing one node along with

the local and global-context for the rest of the graph.

Take for example a uniform distribution of nodes based on a k-way hierarchical decom-

position of space with nodes. Then a cut shows nodes in detail and

nodes or clustered nodes in a local and global context. For example, 40 nodes or clustered

nodes are displayed when a single node is selected in a million node graph drawing, which

has a uniform distribution, and is clustered according to a quadtree hierarchical space de-

composition.

Figure 3.24 shows the drawing of a cut, extracted by the straight cut method from a

hierarchical compound graph, based on the underlying graph shown in Figure 3.25. Clearly

this is not a great visualization, as much detail and some structure have been lost, when

compared with the original in Figure 3.25. However, if different projection techniques are

used, then the nodes can be drawn larger and the clusters smaller, hence balancing the
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Figure 3.26: A multi-cut view of two selected nodes to root of the tree in Figure 3.16

Figure 3.27: The different contexts and elided sub-trees for the multi-cut in Figure 3.26

overall picture and allowing the drawing of node labels.

The cut technique can be extended to show multiple cuts from a set of nodes; and this

is called the multi-cut view. Figure 3.26 shows an inclusion tree overlaid with an event

horizon, as a result of computing two straight cuts from two selected nodes. Figure 3.27

shows the areas of local detail along with the local- and global-context for each node. The

nodes and clusters on different levels of abstraction, along with the edges and implied-

edges form the event horizon of this précis. A drawing of this précis, which includes

different levels of abstraction, is an event horizon drawing.

Here the local-contexts are disjoint but if the nodes were geometrically close they may

well share a larger local-context area. This approach is useful for addressing the classical

detail-in-context problem of showing nodes in detail along with their global connectivity.

Figure 3.28 shows a multi-cut from 12 nodes in three groups on the periphery of the hi-

erarchical compound graph. Figure 3.29 shows a multi-cut from 60 nodes in six groups.

Where the individual cuts intersect they form an event horizon. In the drawing of a multi-
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Figure 3.28: A multi-cut based on
12 nodes from the graph in Figure 3.25

Figure 3.29: A multi-cut based on
60 nodes from the graph in Figure 3.25

cut, the local contexts become shared and the global context is shown at a lower level of

abstraction. Figure 3.29, has a visual weight of 5%. This represents a 95% reduction in the

number of nodes required to effectively visualize this node set while retaining a context

view.

These cut views allow for an approximate drawing of a set of nodes, which reduces

the visual complexity and computational effort in rendering the visualization. As noted

above, different projections of the underlying event horizon drawings are possible. Fig-

ure 3.30 shows a simple single focus fisheye view of the drawing in Figure 3.29. Other

more sophisticated projection techniques include multiple foci [208, 257] and intelligent

zoom techniques [289].

Surface Views

As noted earlier, a surface view is a three dimensional projection of an event horizon précis

extracted from a hierarchical compound graph. These visualizations clearly show the dif-

ferent levels of abstraction in multi-cuts from a hierarchical compound graph.

Figure 3.31 shows a graph drawing from our case study in Chapter 6. The event horizon

drawing of a multi-cut is shown in Figure 3.32. The surface view of this event horizon is

rendered as a three dimensional picture in Figure 3.33. This surface shows the nodes drawn
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Figure 3.30: Simple fish-eye projection of the 60 straight cut-slice view from Figure 3.29

at the “highest level”, the shared local context as the “middle level”, and the global context

at the “lowest level”. Figures 3.34, 3.35, 3.36 and 3.37, show other multi-cuts and surface

views of this graph (the peaks in the three dimensional surface views represent nodes in

the précis).

Bell curve views

Cut-views are formed by well defined cuts through the cluster tree structure. This can

result in the detail and local context of a cut view not including nodes and clusters that are

geometrically close, as a result of them being far away in the inclusion tree structure. This

problem can be overcome by the use of neighbourhood techniques such as “Bell curve”

views. A bell curve view is a simple quadric surface through a volume defined by the

layout and the height of the cluster tree. This can be extended to a surface through 4

dimensional space for three dimensional drawings, where the fourth dimension is defined

by the height of the cluster tree. In three dimensions the curve is a trace which is rotated

about the node from which the curve is defined. This rotation forms a surface cut through

the volume defined. The précis is then formed as follows: nodes inside the volume are
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Figure 3.31: 2D drawing of the
underlying graph rdb450

Figure 3.32: 2D drawing of a multi-cut (event
horizon), from Figure 3.31

Figure 3.33: 3D drawing of an event horizon, showing detail, local- and global-context using hyp-
sometric tints
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Figure 3.34: 2D drawing of an event
horizon extracted from rdb450,
showing two areas of detail

Figure 3.35: 3D drawing of an event horizon,
showing two regions of detail

Figure 3.36: 2D drawing of an event
horizon extracted from rdb450,
showing multiple areas of detail

Figure 3.37: 3D drawing of an event horizon,
showing multiple regions of detail
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included in the précis. However, if all children of a parent inside the volume, are not inside

the volume then that cluster is included in the précis. The highest clusters containing only

nodes not covered by a cluster already in the précis are added to the précis. This surface

generates the geometric local-context of a node by including geometrically close nodes and

a global-context be including clusters far from the node. As with level views, these simple

quadric surfaces define an event horizon which can be drawn. Nodes inside the volume are

drawn at the lowest level of detail and the closest clustered nodes to these nodes are drawn

at varying level of local and global context.

A multi-cut method which takes different “angles” through the cluster tree can approx-

imate a surface. This technique may provide an elegant parameterized approach to the

generation of detail-in-context views.

3.12 Remarks

The hierarchical compound graph, described in Section 3.3, provides the basis for the hier-

archical compound graph quality measures introduced in this thesis. The geometric clus-

tering approach taken here is based on a recursive decomposition of space. This clustering

method, as we show in the next chapter, creates inclusion trees that can greatly improve

the performance of classical force directed layout methods. The visual précis drawing

techniques presented, dramatically reduce the visual weight and computational effort in

creating the visualizations.

In this thesis we do not propose to study the effectiveness of any of these drawing

techniques but rather the quality of the drawings of the précis extracted. Given the number

of possible précis for any graph is large, we restrict our interest to the clustering and graph

drawing aesthetic measurement of horizon views. There are typically horizons in

any given hierarchical compound graph.

Along with measuring computational performance, classical graph drawing aesthetic

measures, and our quality measures the aim is also to study the quality of the horizons

based on aesthetic measures in each of the case studies.
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The FADE paradigm

“Art, like morality, consists of drawing the line somewhere.” - Gilbert Chester-

ton

This chapter describes the FADE paradigm which is embodied in a suite of graph draw-

ing algorithms. These algorithms are based on the hierarchical compound graph model

introduced in Chapter 3 for the clustering, visual representation, and abstraction of large

amounts of relational information. Each member of the FADE suite uses a fast geometric

clustering of the locations of the nodes based on simple recursive space decomposition

techniques. This geometric clustering induces a graph theoretic hierarchical clustering

which is used to build a hierarchical compound graph for viewing and measurement. The

hierarchical compound graph is then input to force-directed algorithms that improve the

relation between Euclidean and graph theoretic distances in the underlying drawing. This

improvement in the underlying drawing in turn improves the graph theoretic clustering

and hence improves the quality of the hierarchical compound graph. Iterating this process

further improves both the drawing and the hierarchical compound graph.

Force directed graph drawing methods, such as those outlined in Section 2.2.4, proceed

by making small iterative changes to the layout of the graph; each change reduces some

energy function for the system of forces. Although sensitive to the initial layout, these

methods often produce aesthetically pleasant drawings due to the nature of the interacting

forces. Groups of related nodes are drawn together, whereas unrelated nodes are typically

drawn far apart. Several authors have commented that force directed layouts often exhibit

the natural clusterings of the graph that one hopes to discover and visualize [136, 173,
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249]. Our hypothesis, called the progressive cycle shown in Figure 4.1, marries graph-

drawing, hierarchical compound graph creation, and visual précis. The progressive cycle

suggests that a drawing with high energy has poor quality both as a visualization and as a

hierarchical compound graph according to any geometric or graph theoretic measure used.

As the forces are applied and the drawing improves and moves towards a lower energy

state, the hierarchical compound graph improves.

We aim to show that the accuracy of the force calculation in our FADE paradigm is

not the determining factor for the quality of the graph drawings produced. Section 4.2

describes how force directed graph drawing algorithms relate to the N-BODY problem in

particle simulation. We also review the existing force directed algorithms which have de-

rived methods from this area in Section 4.2 and give a specific example in Section 4.2.1.

Section 4.2.2, introduces “tree codes” which provide the basis for the FADE suite of algo-

rithms described later in this Chapter. Section 4.3 introduces the FADE paradigm, along

with describing different “cell opening criterion”. Section 4.3.4 describes the scaling and

accuracy measure used to compare the performance and accuracy of the FADE suite of

algorithms, with classical force directed methods. Section 4.4 describes the basic two di-

mensional FADE2D algorithm in detail, along with an overview of the geometric clustering

algorithm used. Section 4.5 describes a three dimensional force directed layout algorithm

called FADE3D. As we show here and in our case studies, the use of an initial random lay-

out may not be suitable starting point for the drawing of large graphs using a force directed

layout. Section 4.6 describes a “wave front” algorithm which may be used in conjunction

with a two or three dimensional FADE method; this aims to produce a reasonable initial

drawing (low energy state) from which further iterative improvements are possible.

4.1 Overview

The main idea of the FADE paradigm is the following. Given an initial layout method, such

as random placement, a graph can be assigned geometric attributes. This process creates a

graph layout, which can then be rendered to produce a graph drawing. This is the classical

graph drawing “pipe-line” [146], as indicated in Figure 4.1.
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Figure 4.1: The Progressive Cycle of Drawing and Hierarchical Compound Graph Improvement

In the FADE paradigm, we take the graph layout and perform a geometric clustering

(typically by recursive space decomposition) of the locations of the nodes. This process,

along with implied edge creation, forms a hierarchical compound graph, as shown in Fig-

ure 4.1. The hierarchical compound graph, which includes the decomposition tree, allows

us to approximate the nonedge forces in our force directed graph drawing algorithms. Us-

ing the decomposition tree, FADE computes forces; the nonedge forces may be approxi-

mately computed. After computing the forces, they are applied, and the underlying graph

layout is updated. This in turn requires the recomputation of the hierarchical compound

graph, which was formed on the previous locations. This process, if iterated, is called the

progressive cycle where, as the graph drawing improves, the quality of the hierarchical

compound graph also improves.

Roughly speaking, the progressive cycle of FADE proceeds as the repeat loop in al-

gorithm 1. The stopping condition can be a simple counter, an evaluation based on an

aesthetic measure, or a condition derived from the graph clustering measures presented in

this thesis. Further discussion of possible stopping conditions is outside the scope of this

thesis, instead we focus on a discussion of the nonedge force computation. The progressive

cycle can be slightly modified for different platforms. Instead of computing the nonedge
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Algorithm 1 FADE paradigm
begin
Compute Initial Layout
repeat
Compute Edge Forces
Move Nodes
Construct Geometric Clustering
for each node do
Compute Approximate Nonedge Forces on

end for
Move Nodes
Update Bounding Area/Volume

until Stopping Condition
end

force for each node in turn; the nodes and pseudonodes may be added to an “interaction

list” for each node. An interaction list is the list of twig nodes and leaf nodes of the inclu-

sion tree that are involved in the calculation of the approximate nonedge force on . Such

lists can be used, for example, in a parallel workload distribution of force calculations.

The quality of the hierarchical compound graph can be evaluated by various clustering

quality measures introduced in Section 3.4. The hierarchical compound graph is also used

to extract précis which can be rendered as graph drawings. The quality of these drawings,

along with the drawings of the underlying graph, can be evaluated using the graph drawing

aesthetic measures described in Section 2.2.2. Evaluations with these measures, using data

from two application domains, are discussed in Chapters 5 and 6.

In general, the performance improvement in our FADE paradigm comes from comput-

ing nonedge forces using a recursive approximation of groups of nodes, rather than all the

node-to-node nonedge forces directly. To achieve this, we form a recursive space decom-

position of the locations of the nodes in a graph drawing, to form a geometric clustering

of the graph. Different space decompositions generate different recursive geometric clus-

terings of the nodes of the graph. The recursive clustering, represented as sub-trees, does

not directly produce a high quality geometric clustering of the node positions, nor is it nec-

essarily a high quality graph theoretic clustering. However, the clustering does facilitate a

dramatic improvement in the performance of force directed algorithms, as shown in Sec-
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tion 4.3 below. Further, it allows for multi-level viewing of huge graphs at various levels

of abstraction. As the quality of the drawing improves (as it reaches a lower energy state

of the force system), the quality of clustering, exhibited by the inclusion tree improves to

a reasonable amount. This clustering, if it is of sufficient quality is appropriate for visual

abstraction. Evaluations of the performance of FADE in application domains is discussed

in Chapters 5 and 6.

The FADE layout and viewing paradigm provides a novel technique for clustering and

drawing large graphs, along with a geometric viewing technique based on that clustering.

This model draws together three difficult problems, that is, performance, abstraction, and

clustering, and uses the same underlying model to tackle each. Moving from drawing,

to viewing the graph in detail, to viewing a visual précis is integrated into one model.

Basing the decomposition of the graph firmly in the geometric domain allows for a wealth

of existing visual presentation and augmentation methods to be applied [38, 60, 121, 168,

263, 266, 292].

Our FADE paradigm is related to the clustering and visualization methods of Walshaw

and Harel mentioned in Section 2.2.7. The main difference with the graph theoretic clus-

tering approach of Walshaw [283] and Harel et al. [113, 115] is that we approximate forces

based on actual geometric information, rather than preprocessed approximate forces. This

difference allows our force-directed methods to be used in interactive drawings that show

high-level intermediate results. The FADE method can also be applied to large graphs,

without distorting the resultant drawing due to an approximated underlying graph cluster-

ing structure. All the performance and time measures in this chapter were computing using

an implementation in Parlanse, running on a 500Mhz Pentium III processor with 512Mb

of memory.

4.2 Particle Simulation

Modeling large numbers of interacting particles through long- and short-range forces has

interested physicists for centuries (see [5, 125, 222, 275]). Celestial mechanics involves

charting the motion and inter-play between heavenly bodies such as super-novas, black-
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Figure 4.2: Fabry-Perot Image of the Simulation of two Interacting Galaxies. Reproduced by cour-
tesy of Professor G. Bothun of The Electronic Universe Project [31]

holes, galaxies, stars, comets, and planets. Methods and techniques to model such interac-

tions have been developed over the centuries but until recently modeling large particle sets

was infeasible. Other fields of science also require modeling systems consisting of inter-

acting particle sets, such as plasma physics, biological macromolecule simulation, and the

vortex method in fluid dynamics [43, 125, 131, 222]. However, regardless of the domain,

the same basic problem presents itself: the equation of motion of a system with more than

two interacting particles defies an analytical solution.

As computers have become more powerful over the past few decades, particle re-

searchers have developed simulators that plot the trajectories of multiple particles simulta-

neously. The simulation includes the position, mass, and velocity of each particle .

As such, the force on any one particle can be computed by considering the position

and masses of all the other particles in the simulation along with any other external influ-

ences (such as magnetic fields in plasma simulations). For classical simulations this can be

expressed as:

(4.1)
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Where,

is a rapidly decaying function of distance, such as the Van der Waals force in

chemical physics.

is a long-range force, such as gravitational attraction or electrical repulsion.

is an external force, typically independent of the position and number of

particles, such as an external electric field.

Since is an independent force, it is calculated separately for each particle, which

contributes to the computation time for . In such simulations is typically

as well, because the force decays rapidly and each particle interacts significantly

only with a small number of its nearest neighbors. If only both of these force calcula-

tions were required to be taken together it would result in the development a very fast and

scalable algorithm. However, the computation of presents a problem because if done

directly, it requires operations. So an algorithm that calculates by direct parti-

cle to particle comparison for the force will be a quadratic time algorithm and as such

will only be suitable for simulations of a few thousand particles using state of the art high

performance computers. However, many simulations in physics, such as in astrophysics,

and plasma physics, require large numbers of particles with long range forces. Such nu-

merical simulations are referred to as the -body problem and typically involve 10 - 10

particles. The cost of is excessive in most cases, and prohibitive in others.

In certain simulations the force can be an electrical repulsion force. In the clas-

sical force directed layout technique, the force between every pair of unconnected nodes

is often modeled as an electrical repulsion [60]. It is this realization that connected the

-body problem to graph drawing [236, 237, 296], so that:

(4.2)

is a generalization of the nonedge forces in the force-directed layout. When using the clas-

sical force-directed approach for graph drawing, the same scaling problem occurs.
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In other -body fields, approaches have been developed to reduce the computational ef-

fort in calculating the long range forces by means of approximation or estimation.

Each and every method that attempts to approximate the force introduces errors. The

domain of the simulation often dictates the acceptable level of inaccuracy. Typically the

accuracy of the approximation is traded off against a faster running time for the simulation.

We review two of these methods next.

4.2.1 PIC Codes

One such estimation method is the particle-in-cell (PIC)method. A regular mesh is placed

over the simulation area and the particles contribute their masses to create a source density.

These source densities are used in the estimation of the force field for the mesh. The forces

are then interpolated from the mesh to the particle positions. PIC codes have been popular

in particle simulations but have two primary drawbacks:

PIC codes have difficulties dealing with non-uniform particle distributions, that is,

where the particle distribution is clustered [222]. In Chapter 5 we show reverse en-

gineering graphs, that exhibit highly non-uniform distribution in their layout. Chap-

ter 6, includes graphs that are suitable for dynamic updates with such PIC code

methods.

PIC codes cannot accurately model the local correlations between particles in bound-

ary cases, which can result in great inaccuracies in this method due to the imposition

of an artificial grid which induces those boundaries.

The modified force-directed algorithm of Fruchterman and Reingold [97] follows the

PIC approach. Unfortunately, PIC based methods prove unsuitable for approximating

nonedge forces in graph drawings which do not exhibit a uniform node distribution. An

initial random drawing of any graph will have uniform node distribution, however as the

nodes are moved (due to edge and nonedge forces), their distribution becomes increasingly

less uniform (in all but the most trivial cases).

Attempts to overcome some of the weaknesses of PIC approaches have employed finer

grids to obtain better resolution in denser areas of the simulation and adaptive grid refine-
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ment (see [222]); these refinements have not been adopted for graph drawing. A more so-

phisticated method that attempts to more accurately model local interactions is the particle-

particle particle-mesh technique . It is an effective compromise between the possible

number of particles and the spatial resolution if the particles are approximately uniformly

distributed and relatively low precision is required. In the force-directed method for graph

drawing, the required precision of the force calculation might be lowered; however a guar-

antee that as we iterate the process, each graph drawing has uniformly distributed nodes is

unrealistic. As has been noted in other fields, if the particle distribution is clustered,

is not suitable.

4.2.2 Tree Codes

The simultaneous work of Appel [7], Jernighan and Porter (see [222]) exploit the real-

ization that particles interact only strongly with their nearest neighbours and less detailed

information is required to compute the interactions with more distant particles. This fact

comes from the typical forces used in such simulations; for example gravitational at-

traction. Based on this realization, the early development focused on creating complex data

structures with lists and pointers which attempted to model the “close-neighbourhood” and

the “distant groups” for each particle in the simulation. These approaches proved success-

ful but often resulted in large errors being introduced to the simulation due to unphysical

grouping of particles. Another problem arose from the complexity of the data structures;

these become more “tangled” as the simulation progresses, which makes it difficult to

predict run-time or memory requirements a priori. Some data structures can require an ar-

bitrary amount of space to hold change and update information. Tangling can occur when

certain boundary conditions of the simulation are approached, resulting in large amounts

of mostly redundant and interrelated additions to the data structure.

Barnes-Hut introduced a scheme to recursively group particles based on an oct-tree

decomposition of space [14]. An oct-tree is a three dimensional extension of the quadtree

described in Section 3.7.1. This scheme overcomes the tangling problem by rebuilding

the decomposition tree for each timestep of the simulation. By rebuilding at each and
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Figure 4.3: A two dimensional space decomposition of 10000 uniformly distributed bodies on a
unit disk. Reproduced by courtesy of M. Warren from Warren and Salmon (1992) [290]

every timestep, this scheme ensures that the particle groupings are systematically updated,

thereby avoiding the unphysical grouping problem of the prior methods. The previous

schemes take nominal time but the arbitrary nature of the data structures meant

this was difficult to analyze and typically not achieved in practice. The Barnes-Hut scheme

has a complexity of which can be rigorously proven [14, 222] under some

reasonable distributions of particles (see [222, 275]).

By using a tree data structure, the Barnes-Hut scheme, its derivatives and related schemes

are collectively referred to as tree codes in the astrophysics literature [5, 7, 14, 28, 43, 222,

275]. Any method used to speed up N-BODY force calculations by the use of a systematic

and recursive division of space into a series of can be considered a tree code. The

Barnes-Hut scheme is based on an octary-tree code, whereas binary-tree codes were later

developed by others such as Press and Benz (see [222]).

Determining the close neighbourhood, called a “near-field”, of a particular particle

requires operations if calculated directly. The tree data structure provides a way
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Figure 4.4: A comparison on the number of direct node-to-node calculations required upto 256
nodes, compared with a and with a constant of 10

of determining the degree of closeness without explicitly calculating the distance between

every pair of particles. The force on an individual particle from other particles in the

“near-field” is, on average, evaluated by direct particle-to-particle interaction, whereas the

force due to more distant particles in the “far-field” is included as a group contribution. In

a tree-code method the force of “near-field” particles is computed exactly, while the

of “far-field” is approximated.

Tree codes were first developed in the context of galactic simulations involving the

study of the collision of galaxies. Tree codes may be based on regular (quadtree, Oct-tree)

and irregular (Voronoi) space decompositions. Other trees, such as a nine-way recursive

decomposition (nono-tree), which is a member of the orthogonal family of two dimen-

sional decompositions, is illustrated in Figure 3.13. Regular trees such as this can be built

in linear time.



4.3 Force-directed Algorithms by Decomposed Estimation 111

Figure 4.5: Fifteen nonedge force computations involving node a

Figure 4.6: A single nonedge computation on a with a pseudonode representing the 15 nodes, from
Figure 4.5

4.3 Force-directed Algorithms by Decomposed Estimation

Classical force-directed methods are based on the direct computation of all node-to-node

forces, which dramatically limits the number of nodes that these algorithms can handle, as

shown in Figure 4.4. In FADE, the node-to-node force calculations are approximated based

on the notion of well-separated clusters, as in other N-BODY based methods [5, 7, 14, 28,

43, 110, 125, 222].

As noted in [110, 222, 275], any force computation errors occur due to round-off, trun-

cation, and discreteness effects, which makes it unreasonable to compute the forces to

extremely high precision. Typically, for particle based simulations, in for example astro-

physics, it is sufficient to have the approximation errors of the tree code be of the same

order as these numerical errors. For visualization, this requirement is not the same because

our goal instead is to reach a minimum energy state rather than the ensuring the accuracy

of the forces. Using a two dimensional electrical repulsion as , then the x component
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of this nonedge force is defined as follows:

(4.3)

Where is the euclidean distance between points and and is a weighting

factor. The y component of a two dimensional layout is similarly defined. Each pair of

nodes must be compared in the nonedge force calculation, in the classical definition. For

example, consider just the nonedge force on node in Figure 4.5. Direct calculation of

the nonedge force on node requires fifteen force computations, one for each pair.

However, the group of nodes can be clustered and represented as a new pseudonode with

weight , as shown in Figure 4.6. If this pseudonode is used, then we save 14 force

computations, at the expense of clustering the nodes and the accuracy in the force compu-

tation. However, if the node and cluster are “far apart”, then the inaccuracies introduced

by the approximation are minimal. Finding such clusters in an efficient manner, and de-

termining whether the node and the cluster are sufficiently“far apart”, are two keys to the

FADE paradigm. As described, this is a mono-pole approximation of the forces, due to the

single pseudonode representing all the nodes in the cluster. Higher order approximations,

that is, -order multipole expansion approximations, are briefly discussed in Chapter 7.

In the basic FADE method, called FADE2D, the clusters are created by generating a

quadtree space decomposition of the locations of the nodes in the layout. This decomposi-

tion generates a canonical set of squares. These define a hierarchical geometric clustering

(partitioning) of the locations of the nodes. This partitioning in turn induces a graph-

theoretic hierarchical clustering of the nodes of the graph, that is (along with implied

edges), a hierarchical compound graph.

The process of creating such quadtrees is described in Section 3.7.1. Figure 3.14, shows

an example of a quadtree space decomposition for a given graph layout. In FADE, the

recursive division of space generated by the quadtree is not used like a grid as in the PIC

codes but instead as a bookkeeping structure and inclusion tree. The tree structure provides

a systematic way to determine the degree of closeness between nodes without explicitly

calculating the distance between each pair of nodes.
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The root cell of the inclusion tree has a mass equal to the total number of nodes in the

graph, that is . The centre of mass of the root cell is the average of both

the and -locations of the nodes in the graph layout. So, as the tree is constructed, the

mass of each cell is set to be the sum of the masses of its daughters. As a result each cell

contains a centre of mass, which is the average of the centres of mass of its daughter cells.

It is the distance between this centre of mass and an individual node that is used to

determine the closeness between a cluster (cell) and a node. If the centre of a cluster is

far enough away, according to a “cell opening criterion”, then the node-to-pseudonode

nonedge force is computed. If the cluster is too close, then its daughter cells are resolved

and the process continues. This approach means that the contribution of close nodes is

computed directly, as per the classical method, whereas the contribution of distant nodes is

taken into account only by including node-to-pseudonode forces, representing many node

pairs. So overall the force on a node is

(4.4)

is due to the edge forces

is due to the node-to-node nonedge forces and is the set of close nodes.

is due to the node-to-pseudonode nonedge forces and is the set of distant

nodes.

Overall, there is a time saving by introducing approximations into the force calcula-

tion (as with tree codes). By approximating the forces, FADE introduces an error into the

force calculation. Measuring, quantifying, and constraining this error is the subject of

considerable study in other N-BODY fields (see [5, 14, 222]) where such errors can cause

catastrophic inaccuracies in the simulations [290]. Whereas in FADE, in general, the greater

the error in the force calculation, the more iterations of FADE are required to reach a low

energy state.

Although we restrict our interest in this Chapter to the inclusion tree of the hierarchical

compound graph, it is worth noting that our overall goal is more than just particle sim-
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ulation. Unlike particle simulation, FADE addresses the measurement and formation of

abstract representations of the data. The hierarchical compound graph allows measures of

clustering quality to be formulated, as described in Section 3.4, and provides means to ex-

tract précis of the underlying graph. Drawing these précis, allows high level abstract views

of the underlying large graphs to be visualized.

4.3.1 Barnes-Hut Cell Opening Criterion

After computing the edge forces, FADE proceeds by determining the nonedge forces on

each node of the graph in turn. The cell opening criterion is a measure that determines

whether a cluster is far enough away from the current node to be considered a pseudon-

ode in the nonedge force calculation. The simplest cell opening criterion (also called a

multipole acceptability criteria), formulated by Barnes and Hut [14] is:

(4.5)

where is the width of the cell, is the Euclidean distance between current node, and

the centre of mass of the cell and is the “fixed accuracy parameter”. The fixed accu-

racy parameter allows the overall runtime of FADE and hence the accuracy of the force

computation to be controlled.

The value of is chosen a priori and not changed during the computation of the forces.

For astrophysical simulation, a compromise of - , often proves to be a practical

choice (see [222]). For FADE the value of is typically in the range - , since the

edge forces tend to dampen the larger errors introduced in the nonedge force calculation.

Using this cell opening criterion then for each node-to-pseudonode criterion check; if

, then the cell is distant, the internal nodes of the cell are ignored and the node-

to-pseudonode force, is added to the cumulative force for that node. Otherwise, the cell is

resolved into its daughter cells, each of which is recursively examined. Cells are resolved

by continuing the decent through the tree until either the opening criteria is satisfied or a

leaf node is reached.

Consider the example shown in Figure 4.7. Here a quadtree space decomposition is
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(a) Space Decomposition (b) cell opening criterion

Figure 4.7: Comparing node 5 and 6 with the North-West pseudonode, where and
.

used to geometrically cluster the nodes of this graph layout in Figure 4.7(a), as indicated

by the quadtree drawing over the graph drawing. The picture in Figure 4.7(b) graphically

depicts the use of the Barnes-Hut cell opening criterion for two nodes 5 and 6 with a value

of 1.0 for the fixed accuracy parameter .

In Figure 4.7(b), the leaf node 5 is compared with the pseudonode for the largest north

west cell, which is one of the daughter nodes of the root cell. In the simplest case, the

weight of the pseudonode is determined directly by the weight of the cell. The weight of

the cell is the number of nodes that it contains, or the number of nodes that its daughter

cells contain. The weight of this cell is 5 so the pseudonode has a weight of 5. The value

for is the width of the cell that contains the pseudonode and is the Euclidean distance

from the centre of the node to the centre of the pseudonode. Thus is in this

case. Given that , FADE computes an approximate nonedge force between this

node and the weighted pseudonode and adds this force to the cumulative nonedge force for

node 5. This approximate computation has resulted in a saving of four node-to-node force

computations.

Again in Figure4.7(b), the leaf node 6 is then compared with the pseudonode for the
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Figure 4.8: The minimum distance from nodes 5,6,7,8,9,10 to the edge of the north-west cell.

largest north west cell. Here is the distance between node 6 and the pseudonode in

the north-west cell. Thus is in this case. Here the value does not fulfill the

criterion , hence the pseudonode is resolved into its daughter nodes, which are

the pseudonodes representing (0,1) and (2,3,4). The pseudonode (0,1) does fulfill

the criterion and hence the node-to-pseudonode force is added to the cumulative nonedge

force for node 6. FADE continues by testing for the pseudonode (2,3,4). Again

the criterion is not met, so each of the daughter cells are resolved and direct node-to-node

forces are computed, the results of which are added to the cumulative nonedge force for

node 6.

In this example, the nonedge forces due to nodes close by are included as direct node-

to-node force contributions, whereas more distant nodes are included as group contribu-

tions; this example is typical.

The accuracy of a tree code, using this cell opening criterion, has been shown to admit

potentially unbounded errors unless [251]. This can be catastrophic in particle

simulation, so three alternate cell opening criteria, which address this unbounded error

problem, are described below.
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Figure 4.9: The maximum distance from the centre of mass of the north-west cell to the edge of
the cell.

4.3.2 Other Cell Opening Criteria

The minimum distance cell opening criterion (also called the Min-distance acceptance cri-

teria), formulated by Salmon and Warren [251] aims to avoid gross errors, in certain patho-

logical cases, where the centre of mass is near the edge of the cell. This cell opening

criterion is:

(4.6)

where is the width of the cell and is the minimum horizontal or vertical Euclidean

distance between the current node and the edge of the cell. This criterion measures the

minimum distance from the node to any point in the cell, which is independent of the

contents of the cell. Hence, this measure can be applied without computing the exact

locations of the nodes inside the cell. Figure 4.8, shows the minimum distance from the

centre of each node to the edge of the north-west cell.

The Bmax cell opening criterion is motivated by the largest possible error in a dis-

tribution of nodes in a cell. For any distribution of nodes in a cell, the largest error is

proportional to the magnitude of the single approximation, and a monotonically increasing

function of the distance from the centre of mass to the edge of the cell, divided by the
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distance to the node [15, 251]. This cell opening criterion is:

(4.7)

Where is the minimum distance from the centre of mass of the cell to the edge of the

cell. This is illustrated in Figure 4.9.

Finally, other cell opening criteria refinements, such as that by Barnes, have attempted

to address the unbounded error problem of relatively off-center mass distributions with-

out introducing extraneous computation (see [15]). Barnes 1995 cell opening criterion,

illustrated in Figure 4.10 is:

(4.8)

Here is the Euclidean distance from the centre of mass of the cell, to the middle of the

cell. If the centre of mass is reasonably close to the middle of the cell, that is, not close

to the edge, then the term does not contribute greatly. However, as the centre of mass

tends towards the edge of the cell, the term contributes much more, thereby avoiding the

pathological unbounded error case.

For FADE, the accuracy of the force calculation is not the determining factor for the

quality of a graph drawing. Our case studies indicate that, a few very large errors in a

given force calculation are typically dampened by the edge forces and are averaged out

over many runs of FADE. As such, the unbounded error problem is not as significant as

with particle simulations and we typically adopt the Min distance cell opening criterion

in our case studies. In Chapter 7 we suggest possible refinements to our FADE paradigm

with the use of other cell opening criterion.

4.3.3 Fixed Accuracy Parameter

For a reasonably uniform distribution of nodes with a nonzero fixed accuracy parameter

the sum of node-to-node and node-pseudonode interactions is . This was demon-

strated by Hernquist [125] using a simplified geometry, with a single particle in the centre

of a homogeneous spherical particle distribution. However, in contrast with this idealized
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Figure 4.10: The off centre cell opening criterion for the north-west cell.

model, the computation required and the errors introduced also depends strongly on:

the choice of cell opening criterion

the value of the fixed accuracy parameter

the ratio of the average inter particle distance to the width of the root cell.

The reliance on is evident. Take, for example, the case of ; this is obvi-

ously equivalent to computing all node-to-node nonedge forces directly, as per the classical

method of force directed computation. In fact, having is slower than the classical

method, as the time required to build and navigate the tree is unnecessary effort. Choos-

ing a very large results in very few node-to-node computations. This reduction in direct

computation produces a very fast run time for FADE since the number of force calculations

approaches . As is increased, progressively larger pseudonodes are included in the

approximate force calculation for each node, until only the root node is included in the

approximation. However, steadily increasing results in the force calculation becoming

extremely inaccurate.

The trade off between accuracy and speed is very important for FADE, as it allows large

graphs to be drawn with relatively inaccurate forces. Studying the relationship between
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and the inaccuracies introduced requires measures to compare the approximate forces with

some benchmarks. A technique for measuring the errors is described in Section 4.3.4.

FADE example

Here we provide an annotated example of how changing the value of the fixed accuracy

parameter affects the force computation in our FADE paradigm. In this example, starting

in Figure 4.11, FADE computes the nonedge forces on the node , indicated by a star.

Here the edge forces are computed first, so we omit the edges from further drawings, to

emphasize the node-to-node and node-to-pseudo-node force contributions. Figure 4.11

shows a graphical depiction of the interaction list, that is, the nodes and pseudonodes that

contribute to nonedge force calculation for when . This is the classical force

directed case, with only node-to-node force calculations, and every node in the graph is

included in the interaction list for .

As the value for increases, the number and relative weight of the pseudonodes in

the interaction list also increase. The weight of a particular pseudonode is depicted as the

area of the pseudonode image. This is illustrated in Figures 4.12 to 4.16. This increase

in node-to-pseudonode interactions causes a resultant decrease in the number of node-

to-node interactions thereby reducing the run-time of FADE. It is also important to note

that, on average, the largest pseudonodes first appear on the periphery of the interaction

region of . This is the reason for the previously stated observation that, on average, nodes

interact by direct node-to-node nonedge forces with close-by nodes, whereas approximate

force contributions are included for distant groups of nodes. The precise determination of

close or distant nodes is dependent on the choice of and the distribution of the nodes.

FADE treats each pseudonode as a single point mass that approximates a set of nodes

within that cell. This approach follows the monopole tree code methods from particle

simulation. However, it is also possible to increase the accuracy of the FADE paradigm

without increasing the size of the interaction list for a given . Multipole moments treat

the pseudonodes as having multiple centres of mass, rather than treating them as single

point masses. Di-pole and quad-pole methods are popular refinements to the basic tree

code method. Clearly, if the multipole expansion is carried out to a high enough order, it
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contains the total information of the node distribution in the cell. As noted earlier, however,

accuracy in the force calculation is not the driving factor for the use of these methods in

force directed layout. As such, we leave further discussion of these multipole methods to

Chapter 7.
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Figure 4.11: node-to-node interaction list, with and without edges, for node with , that is,
the interaction list as in the classical force-directed method

Figure 4.12: Interaction list for node with and

Figure 4.13: Interaction list for node with and
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Figure 4.14: Interaction list for node with and

Figure 4.15: Interaction list for node with and

Figure 4.16: Interaction list for node with and
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4.3.4 Error Measure

Although accuracy in the force computation is not the determining factor in the quality of

the final drawing produced, it is an important factor that must be addressed and measured

in our case studies. The question of trading off accuracy against performance is related to

the initial layout, the structure of the graph, the choice of , the shape of the decomposition,

and the density of the node distribution. Extensive analysis of tree-code performance and

accuracy, in the particle simulation context, has been performed since the development of

tree based methods [5, 28, 124, 125, 222]. Typically these analyses have focused on how

accurately a given tree-code calculates the forces, since this is often the limiting factor for

good energy conservation. These studies have resulted in error measures that chart how

accurately a tree code approximates the true path of a given particle from start state to end

state over a given number of timesteps.

FADE uses the same class of error measure as in the classical N-BODY simulations. To

give a comparative analysis, only the nonedge forces are factored into the error calculation

here and in our case studies. In reality, the edge forces tend to dampen out the errors in the

nonedge forces, resulting in very accurate overall forces, even with relatively high nonedge

force computation errors. In FADE, the error measure is used to see how closely the nodes

of the layout follow the path as prescribed by the nonedge forces in the direct node-to-node

computation method. This error measure gives a value for the global conservation rather

than an absolute accuracy measure. The error measure ( ) is given in terms of a three

dimensional layout (the force component in the direction, can be safely ignored for a two

dimensional error measure). More precisely the error measure is defined as follows:

(4.9)

Where for

(4.10)

where the x,y,z components of the approximated forces on a node are , ,

and the x,y,z components of the directly summed forces on are , , .
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The results of applying this error measure, to a set of example graphs, which have been

given a random layout in a fixed bounded area are shown in Table 4.1. Here the error is

averaged over a selection of runs of a basic implementation of FADE. In this example, we

randomly select iterations from the first iterations of FADE2D; the algorithm

described in Section 4.4. Table 4.2 shows the total number of force calculations (both

node-to-node and node-to-pseudonode), averaged over the same iterations, as increases.

Table 4.3 shows both the error measures and the force calculations for the opening iter-

ation of FADE, when the nodes are initially randomly placed. The same trends are evident

in all tables. Some remarks on this data should be made:

The measure shows that as increases, the error climbs, as predicted by other

N-BODY work.

An increase in density of nodes in the unit square in the initial drawing causes the

errors to steadily increase, as the optimal inter-node distance is based on a uniform

spring length, regardless of node density.

An initial random layout, in a scaled unit square, provides a uniform distribution of

nodes which achieves the time as shown by Hernquist [124, 125]; this is

shown in Table 4.3.

One can also see, from the difference between Tables 4.2 and 4.3, that FADE performs

better on the initial random distribution than subsequent iterations. This is primarily due to

two factors.

The runtime of FADE is dominated by the force calculation but is not the same for

every iteration. FADE rebuilds the tree ab-initio before each iteration which takes a

different amount of effort depending on the distribution of the node locations.

If the graph has natural clusters, then as the drawing improves these underlying struc-

tures become apparent and hence the uniformity in the layout decreases.
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Nodes
1277 .00000000004 .0000008380 .0000138081 .00047509631
1832 .00000000038 .0000009288 .0000220585 .00048515007
2487 .00000000032 .0000014832 .0000232423 .00053358670
3242 .00000000047 .0000016704 .0000328129 .00063418773
5052 .00000000072 .0000026256 .0000319591 .00066698126
7262 .00000000126 .0000041525 .0000379348 .00068908789
9872 .00000000234 .0000048062 .0000449909 .00074681910
12092 .00000000259 .0000044238 .0000487464 .00075540835
Nodes
1277 .0019500795 .00539801978 .0150509131 .025228532713
1832 .0019884802 .0048182771 .0143546497 .026913635200
2487 .0021842746 .00505085568 .0153926954 .026407794374
3242 .0022511564 .00578494003 .0166393935 .029829451384
5052 .0025214306 .00678366025 .0180891907 .034157615132
7262 .0025843103 .00651497615 .0193562692 .035122402799
9872 .0027210468 .00680969862 .0198439982 .037554443325
12092 .0026423973 .00676360044 .0190950007 .036336674694
Nodes
1277 .04870902448 .09047355384 .15279595472 .1984136239
1832 .05031801678 .09611990368 .14670438657 .183907956324
2487 .05278841594 .10133313388 .16345486364 .22532728982
3242 .06925755366 .11768116360 .21565771798 .27166379940
5052 .06653620606 .12022535238 .20829714237 .27506811254
7262 .07176602972 .14557621557 .23911949148 .32061095159
9872 .07563862996 .15569051335 .28185172218 .40812468249
12092 .07631118917 .16711961048 .29151599631 .39025153426

Table 4.1: Errors in the nonedge force computation FADE2D different values of
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Nodes
1277 1626234 1566126 1201892 423883
1832 3349876 3172705 2196379 646963
2487 6175171 5689191 4003452 1228431
3242 10497905 9976598 7122082 2018581
5052 30283941 29384859 11939403 4039201
7262 52710204 45329015 28552538 6583002
9872 97383575 81553666 49370679 10293893
12092 146095891 122938983 73202939 14354588
Nodes
1277 215991 134256 80293 61401
1832 318063 193133 113807 86004
2487 576627 338519 190656 142405
3242 900897 507110 278911 207081
5052 1928381 902910 569929 440039
7262 2710759 1463403 769205 558272
9872 4051174 2143683 1092473 779698
12092 5614529 2922024 1472483 1050497
Nodes
1277 44040 28330 15106 10126
1832 60289 36887 16960 9264
2487 100390 61135 30182 19772
3242 142071 85264 41651 27893
5052 293882 189293 801920 69930
7262 376987 219244 108758 71079
9872 513238 288505 130067 79922
12092 691404 384630 175169 111860

Table 4.2: Averaged sum of - - and - - interactions for various
graphs with varying fixed accuracy parameter of , with errors as shown in Table 4.1
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Nodes
1277 1629452 .0 1626900 .00000000 1618085 .000000060
3830 14665070 .0 14657297 .000000001 14416952 .000000062
5052 25517652 .0 25506310 .000000001 24902915 .000000077
12092 146204372 .0 146083109 .000000004 138336227 .00000013
Nodes
1277 1548402 .0000001 834649 .00000027 390064 .00000028
3830 12947392 .0000001 4382696 .00000026 1631375 .00000027
5052 21703741 .0000002 6439792 .00000032 2292324 .00000032
12092 107119059 .0000002 21158111 .00000028 6751967 .00000029
Nodes
1277 196752 .00000028 97337 .000000288 56756 .00000028
3830 755402 .00000027 342516 .000000273 196829 .00000027
5052 1051930 .00000033 478822 .000000330 277517 .00000033
12092 2995143 .00000029 1305468 .000000291 755903 .00000029
Nodes
1277 25769 .00000029 12711 .000000293 10185 .00000029
3830 84656 .00000027 38881 .000000279 30800 .00000028
5052 116414 .00000033 51241 .000000335 40536 .00000033
12092 308811 .00000029 124983 .000000297 97034 .00000029
Nodes
1277 9130 .00000028 7611 .000000271 6071 .00000025
3830 27580 .00000027 22946 .000000256 18487 .00000023
5052 36824 .00000033 30545 .000000316 24420 .00000030
12092 88860 .00000029 73775 .000000274 58893 .00000025
Nodes
1277 4853 .00000026 4034 .000000301 3348 .00000036
3830 14728 .00000024 11830 .000000291 9870 .00000035
5052 19702 .00000030 16020 .000000339 13283 .00000039
12092 46566 .00000026 38047 .000000301 31950 .00000036
Nodes
1277 2865 .00000044 2515 .00000052 2249 .00000060
3830 8589 .00000042 7483 .00000050 6790 .00000058
5052 11491 .00000046 10063 .00000054 9139 .00000060
12092 27421 .00000043 24173 .00000051 21653 .00000059

Table 4.3: The count of - - - and - - interactions and the error
for the first iteration of FADE2D for various graphs with varying fixed accuracy parameter
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Figure 4.17: Initial random layout of a 326 node triangular-mesh and its final drawing

4.4 FADE2D

FADE2D is our basic drawing algorithm for undirected graphs, in two dimensions, using

a simple force model and a quadtree space decomposition to create the hierarchical com-

pound graph. The FADE2D algorithm directly computes the node-to-node forces for edges

and approximates the nonedge forces using a tree-code approach, where the tree is recon-

structed ab-initio for every new iteration of FADE2D. Roughly speaking, FADE follows the

general schema described in Algorithm 1. In this section we describe in more detail how

FADE2D works.

For FADE2D, the initial layout merely assigns random locations to the nodes. This is

a simple technique to give the graph an initial layout. This layout can then be rendered to

produce a graph drawing (albeit a very bad one by almost every aesthetic and clustering

measure). In Section 4.6, we suggest an alternate initial layout strategy which is suitable

for the graphs in both of our case studies. For now, we restrict our interest to the initial

random placement as it provides a consistent starting quality.

For example, Figure 4.17 shows the opening and final drawing of a triangular mesh of

326 nodes. Initially the 326 nodes are assigned random - and -locations and the route

for the edge is defined by its start and end node locations. This layout is then rendered in

the image on the left of Figure 4.17.
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Algorithm 2 describes the computation of the edge forces in FADE2D. The damping

parameter decreases the value and hence effect of the attactive force. If the damping

parameter is then the force is directly calculated and applied to each node.

Algorithm 2 Compute 2D Edge Forces
Input: EdgeSet
Input: , which is a damping parameter
Require:
begin
for to do

-
-

if then

end if

if is not fixed then
+
+
-
-

end if
end for

end

Algorithm 3 and Algorithm 4 describe how a regular geometric clustering, which

includes quadtrees and nonotrees, is constructed in a top-down manner. Here the nodes are

simply added to the tree one at a time. Note that an agglomerative tree construction may

give some performance improvement; however, tree construction takes only a tiny fraction

of the total and the improvement would be negligible.

Algorithm 4 describes the process for creating twigs and leaves of the inclusion tree,

regardless of orthogonal decomposition used. The node and the current cell (the root) are

passed into this method. If the cell is empty, then it is updated to contain the details for this
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Algorithm 3 Build 2D Orthogonal Geometric Clustering
Input: Nodes , Clustering Arity Width
Input: Bounding Box of
Require:
Require: is a positive integer value

newCell( , )
for to do
addNode( [i], root, )

end for

node. If the cell is full, then the node details it currently contains are removed and stored

and the cell is split. This node, and the original node, are then reintroduced at this cell’s

parent level by a recursive call to this method. Finally, if the node is spilt then the centre of

mass of this cell is updated and its weight incremented. References to the daughter cells are

stored in an array and the index to this array is determined by the indexOfDaughter

method. For example, in a quadtree, where there are a maximum of four daughter cells,

this method determines whether the node location is in the north-west, south-west, north-

east or south-east quadrant and selects the index accordingly. If there is no daughter cell

for the current index, then one is created. Once a reference to the correct daughter cell is

determined, then this method is recursively called with the node and this daughter cell.

The crux of the FADE2D method is the “Compute Approximate Nonedge Force” step,

shown in Algorithm 5. It should be noted that in Algorithm 5 is the same class of

weighting factor as the edge resilience in Algorithm 2. These weights are typically set

at 1 for direct force calculation. In an interactive setting these values can be altered, likwise

when the value of is large then the overall non-edge force calculation is inaccurate so the

edge forces can be made to dominate. If non-edge forces between nodes with an edge

between them are not computed, then the the attractive forces on an edge should balance

when the edge is at it’s ideal length (if is 1). In Section 3.7.1 we described how the

internal nodes of the inclusion tree structure of the hierarchical compound graph, the twigs,

contain equivalents for the centre of mass and weight. The weight is typically the number

of nodes that the cell contains. Once these have been defined for each twig node, then they

can be used by the force approximation routine.

FADE2D has been implemented in a prototype graph drawing tool, for the layout, draw-
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Algorithm 4 addNode to a Geometric Clustering
Input: node, cell
Input: Clustering Arity Width
Require:
Ensure: There are at most daughters of this cell
begin
if cell is empty then

else if cell is full then

else Cell is split

indexOfDaughter(cell,node, )
if then

boundBoxOfDaughter(cell,node, )
newCell( , )

end if
addNode(node, cell.daughters[index], )

end if
end
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Algorithm 5 Compute 2D Approximate Node Forces: 2daproxforce
Input: node, cell , Force Intensity ,
Input: Criterion Type, Cell Opening Criterion
Require:
begin

if then
if Criterion Type then

else if Criterion Type then

else if Criterion Type then

else Criterion Type is Orthogonal Distance
if then

else Use Horizontal Distance

end if
end if
if OR cell is a leaf then Use Approximation

else Resolve for the daughter cells
for to do
2daproxforce (node, cell.daughters[i], , Criterion Type, )

end for
end if

end if
end
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ing and visual précis of a variety of graphs and hierarchical compound graphs from differ-

ent domains. Application case studies for FADE2D, along with performance measures,

error measure, aesthetic measures, and clustering measures (described previously) are de-

tailed in Chapter 5 and Chapter 6. These case studies include large software engineering

graphs extracted from a code analysis and matrix market graphs, from a range of applica-

tion domains.

For FADE2D with the cell opening criterion, the effect of having different values

for the fixed accuracy parameter is shown in Figures 4.11 to 4.16. Of course the resultant

inaccuracies of this approximation method also increase; see for example Table 4.1 and

Table 4.3.

A visual précis of qh1484 (from Chapter 6) is shown in Figure 4.18, which is typi-

cal of the high level horizon drawings that the FADE paradigm constructs. A drawing of

add32 produced by FADE2D, a graph of nodes and from the Graph Partitioning

Archive [283, 284], is shown in Figure 4.19.

4.5 FADE3D

FADE3D is a straightforward three dimensional extension to FADE2D. The original tree-

code method of Barnes-Hut [14] was designed for astrophysical simulations, of planets,

stars, and other heavenly bodies in the real world. This required modeling a three dimen-

sional environment which they achieved with an extension of the quadtree space decom-

position called an “octtree”. An octtree is a recursive decomposition of space into eight

octants instead of four quadrants as in the two dimensional quadtree. As is shown in Fig-

ures 4.20, 4.21, 4.22 and 4.23.

Figures 4.20, 4.21 and 4.22, show the top three levels of the space decomposition of a

drawing of nos7, from the case study in Chapter 6. The first figure, the root cell, shows

the smallest cube enclosing all the nodes of the graph drawing. The second figure, demon-

strates the eight way division that occurs in a octtree decomposition of space. Figure 4.22

represents the decomposition to the second level of granularity in the inclusion tree. Fig-

ure 4.23 is a representation of the entire octtree of a space decomposition of bfw782a,
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Figure 4.18: A visual précis of qh1484, from the matrix market (see Chapter 6), drawn with
FADE2D
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Figure 4.19: FADE2D drawing of add32 ( nodes) from the Graph Partitioning Archive [283,
284]
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Figure 4.20: Root cell of octtree decomposition of nos7

which is a graph with two large disconnected sub-graphs.

The FADE paradigm is based on the hierarchical compound graph model, which is

independent of any particular decomposition method; thus it is independent of dimension.

The FADE3D method uses a cubical division of space for graph layout, clustering, and the

generation of visual précis. The primary advantage of the three dimensional variant of the

FADE2D algorithm, as with all three dimensional force directed placement, is that the extra

dimension allows greater freedom in placing the nodes. This can result in a more natural

representation of the graph and hence the information that it represents.

Figure 4.24, shows the results of applying both FADE2D and FADE3D to a graph from

the Matrix Market case study in Chapter 6. The picture in the upper left corner of Fig-

ure 4.24 is produced by FADE2D, described in the previous section. The rest of the draw-

ings in Figure 4.24 are produced by FADE3D. We include the three dimensional model and

a video simulation, for this data, in Appendix A.

The formulation of FADE3D differs little from its two dimensional counterpart. How-
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Figure 4.21: Eight daughter cells of the root cell of an octtree decomposition of nos7

Figure 4.22: Second level of an octtree decomposition of nos7
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Figure 4.23: Complete Octtree of bfw782b

ever, it is important to note that the formulation of the cell opening criterion remains the

same.

The extra dimension roughly doubles the computational effort in building the tree,

which is still negligible compared to the effort involved in the nonedge force calculation.

The force computation involves a few extra floating point operations, and the total over-

head in moving from two dimensions to three dimensions is around 25%; see for example

Table 4.4 for a performance comparison of the two and three dimensional WAVE-FRONT

algorithms.

Figures 4.25 and 4.26 are alternate two dimensional projections of a three dimensional

layout of the graph qh1484. Figures 4.27, 4.28 and 4.29 are visual précis of a third, fourth

and fifth level horizon précis of qh1484 (see Appendix A).

Figures 4.30 and 4.31 are alternate two dimensional projections of a three dimensional

layout of the graphdwa512. Figures 4.32, 4.33 and 4.34 are visual précis of a second,third

and fourth level horizon précis of dwa512 (see Appendix A).
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Figure 4.24: RDB209 a graph of a Reaction-diffusion Brusselator Model, from Chemical Engi-
neering, drawn with FADE2D then with FADE3D and viewed from different 3D viewpoints



4.5 FADE3D 141

Figure 4.25: FADE3D drawing of qh1484

Figure 4.26: FADE3D drawing of qh1484
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Figure 4.27: Third level horizon drawing, of qh1484, with a visual weight of drawn with
FADE3D.

Figure 4.28: Fourth level horizon drawing of qh1484, with a visual weight of drawn with
FADE3D.
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Figure 4.29: Fifth level horizon drawing of qh1484, with a visual weight of drawn with
FADE3D.

Figure 4.30: FADE3D drawing of dwa512
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Figure 4.31: FADE3D drawing of dwa512

Figure 4.32: A visual précis of dwa512a, from the matrix market, drawn with FADE2D
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Figure 4.33: Third level horizon drawing, of dwa512, with a visual weight of drawn with
FADE3D.

Figure 4.34: Fourth level horizon drawing, of dwa512, with a visual weight of drawn with
FADE3D.
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Figure 4.35: dwb512 a graph of the Square Dielectric Waveguide problem in Electrical Engineer-
ing, drawn with FADE3D and viewed from six different 3D viewpoints. The bottom two drawings
are without nodes but include a colour coding of the strengths of the edges.
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Figure 4.36: Starting to pass a wave of thickness through a graph. Black - fixed, Red - in the
wave, Grey - as yet unassigned

4.6 Wave Front FADE

A wave-front layout is a breadth first traversal of the graph structure coupled with the stan-

dard FADE algorithm, either in two or three dimensions. As noted earlier, although our

layout method is computationally inexpensive per iteration, it typically requires a large

number of iterations to move the energy state from a random configuration to a low energy

state which exhibits an aesthetically pleasant drawing. For example, take a large graph

which has been assigned a random layout. The first few iterations of FADE typically im-

prove the micro relational structure rapidly but ignore the macro structure. This results

in adjacent nodes being drawn together but having little regard for non-adjacent relation-

ships (nonedge forces). Large graphs can often remain in this tangled state or require a

prohibitive number of iterations of FADE to improve the aesthetics of the layout. See for

example the three dimensional drawing of the triangular mesh graph of nodes,

shown in Appendix A.

Observation of this behaviour resulted in the development of the “wave-front” force

directed layout method. This is a computationally inexpensive approach to the generation
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Figure 4.37: Midway through passing a wave of thickness through a graph. Black - fixed, Red -
in the wave, Grey - as yet unassigned

of the initial layout. The algorithm uses a “wave”, which is a subgraph that moves through

the graph from a root, in a breadth first fashion, as shown in Figures 4.36 and 4.37. At each

step in the traversal, forces are applied times, only to the nodes in the wave, denoted

by the red nodes in Figures 4.36 and 4.37. After the wave passes through a node, it is

fixed, denoted by the black nodes. The wave has a given thickness , which results in each

node being considered in a force calculation times. A thicker wave-front typically

improves the layout, but increases the runtime. Nodes that have yet to enter the wave do

not have an assigned geometry. When a new node is added to the wave, it is assigned a

location within a bounding circle or sphere of an adjacent node in the wave, that has a

geometry. The bounding circle or sphere is defined by the radius of the edge connecting

this node to the node from which it takes its geometry.

Algorithm 6 describes the basic wave-front method, with a single root. Alternate for-

mulations of the wave-front include the selection of a random set of roots, rather than a

single root. The function breathFirstWave expands the current waveGraph to include new

nodes, connected to the current waveGraph, while removing nodes that have been in the

waveGraph for a number of iterations of breathFirstWave where . This
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ensures nodes only remain in the wave front for a fixed number ( ) of iterations

before they are considered fixed and not re-considered in the force directed placement.

Algorithm 6 Compute 2D Wave Front Drawing
Input: graph, thickness, Force Intensity , force application count
Input: Criterion Type , Cell Opening Criterion
Input: Clustering Arity Width
begin

for each node do Reach Each Disconnected Component
if not then Node Not Yet Positioned

while do Passing Wavefront
breathFirstWave( , , )

2DEdgeForces( )
for i in 1 to m do Apply forces number of times to this sub-graph
for each node in do Nonedge Forces on Each Node in
WaveFront

boundBoxofNodes( )
BuildGeometricClustering( , , )

2DAproxForce( , , , , )
end for

end for
end while

end if
end for

end

Figure 4.38 shows a two dimensional drawing of a node graph computed by a

wave-front method. This graph is a randomly generated graph seeded with clusters. Here

and the inter-cluster connectivity is weak. Figure 4.39 shows a different drawing

of the same graph. Here a high level three dimensional visual précis from the hierarchical

compound graph is overlaid with a cubical hierarchical space decomposition.

Table 4.4 provides a comparative analysis of a two and a three dimensional wave-

front algorithm. These times are averaged over 50 runs of the wave-front algorithm. The
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Figure 4.38: A FADE drawing, by the wavefront method, of a randomly generated clustered graph,
with centres and nodes.
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Figure 4.39: 3D Visual précis of a three dimensional layout of the graph shown in Figure 4.38

Figure 4.40: A FADE3D drawing, by the wavefront method, of dwa512, with , and
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2D 2D 2D 3D 3D 3D

Graph
dwa512 512 1004 0.66824 1.8654 1.1719 0.8446 2.2465 1.2501
bfw782a 782 3394 1.3338 3.8798 2.3465 1.6045 4.592 2.55
qh1484 1484 2492 2.4773 7.2217 4.472 3.2927 8.963 4.845
qh768 768 1322 1.1233 3.379 1.809 1.4976 4.021 2.078
plsk1919 1919 4831 3.2275 9.5322 6.633 3.8342 10.819 7.4941
cry10000 3699 7164 7.1737 20.7732 15.308 8.6492 23.511 17.464
bcspwr10 5300 8271 12.32 32.8294 16.29 18.126 47.822 18.512
dw8192 8192 17404 19.3218 55.644 37.011 23.973 68.989 44.063
rdb3200l 3200 7840 6.1424 18.715 11.967 7.671 22.29 13.687
add20 2395 7462 4.313 12.4418 6.1903 3.345 20.63 7.5567
add32 4960 9462 11.9706 35.7006 16.749 17.6928 52.301 18.616
data 2851 15093 6.6929 19.2406 11.4234 7.8314 22.448 12.0814
crack 10240 30380 24.919 72.5043 32.710 40.177 115.513 52.4268

whitaker3 9800 28989 28.3418 89.0405 42.6301 47.203 151.049 56.52
fe4elt2 11143 32818 33.092 107.015 61.45 45.662 139.72 75.25
cti 16840 48232 51.86 188.531 101.3961 83.2675 266.413 118.534

Table 4.4: Time in seconds, to compute two dimensional (2D) and three dimensional (3D) wave-
front drawings. is the value for the fixed accuracy parameter of each FADE algorithm. is the
number of iterations of FADE per step in the breadth first traversal. is the thickness of the
wave.

thickness of the wave is held constant, while the fixed accuracy parameter and the number

of iterations of the FADE algorithm per step in the traversal is modified. As expected,

tripling the number of iterations of FADE per step, approximately triples the runtime for

the wave-front method. Further, the three dimensional wave-front is typically 25% slower

than its two dimensional equivalent. However, increasing the inaccuracies permitted (by

increasing the value of ) quickly reduces the run-time for both two and three dimensional

algorithms.

The data in Table 4.4 comes from the case study in Chapter 6 and a graph partitioning

archive of large graphs used in a multi-scale force directed research in [283, 284].

4.7 Example Drawings

Additional two and three dimensional examples are included in Appendix A as pictures,

three dimensional models, visual précis and video simulations.
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4.8 Remarks

This Chapter has presented the FADE paradigm for large graph drawing. By using the hi-

erarchical compound graph, this suite of force directed algorithms provide considerably

faster layouts. Although these estimation methods introduce an error into the force calcu-

lation we can measure and compare these errors, which allows us to study the effects of

using different values, and how these affect the overall performance of the algorithm and

the drawings produced. We use the FADE2D algorithm for detailed study in the following

case studies.

The three dimensional FADE3D algorithm requires roughly 25% more computation for

the same fixed accuracy parameter, as its two dimensional counterpart. The wave front

algorithm, couples a graph theoretic traversal with either a two or three dimensional FADE

force directed layout. The computational efficiency of this method stems from the inclusion

of a small section of the graph, at any one time, while computing a layout. The aim of this

method is not to produce a final drawing but rather to produce a better initial drawing that

FADE2D or FADE3D can improve upon.

Overall, the paradigm described here uses the hierarchical compound graph model for

force directed placement. This, coupled with the measures and visual précis described in

Chapter 3 allows us to marry the layout, abstract representation, and clustering measure-

ment, using a single graph model.
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Case Study I: Software Visualization

“Data is not information, Information is not knowledge, Knowledge is not

understanding, Understanding is not wisdom.” - Cliff Stoll and Gary Schubert

Software visualization is the use of computer graphics and animation to help illustrate

and present various aspects of a software system. Examples of such aspects include the

algorithms and data structures used in a piece of software, or details of which functional

components access data from each other. As such, software visualization is a very broad

field ranging from aids for teaching algorithms to techniques for displaying large software

systems. It is research in the latter form that we address in this case study.

Visualization of source code falls into two broad categories, namely static and dynamic

visualization. Static aspects of the software include structures, such as call relations, which

can be gleaned from the raw source code. Identifying dynamic relations or dynamic struc-

tures such as memory usage, requires the software to be executed and such dynamic data to

be collected. The large data sources used in this case study come about from a static anal-

ysis of four software systems, and as such, we do not further address the issue of dynamic

software visualization in this thesis.

These data sets, called resource flow graphs, consist of architectural quarks and their

interrelationships, see Figure 5.1. Given that each resource flow graph contains several

types of nodes and many different types of relationships, these graphs have been further

refined into a set of views. Often these views consist of a large number of disconnected

components. For the purposes of this case study and to contrast it fairly with the next, the

graphs are considered as a single graph. Not as a series of smaller sub-graphs.
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The work of Koschke [163] demonstrates how these views can be used in the detection

of components by automatic and semi-automatic means. This work shows that automatic

component detection is at best only moderately successful. Based on this, a semi automatic

method is proposed by Koschke to integrate the user into the component discovery loop.

This integration includes techniques such as allowing the user to modify weights, control

search parameters, and apply combinations of discovery techniques. As noted, other more

visual interaction techniques might allow better user feedback. It is this intuition that is

realized and evaluated in this case study for the visualization and abstract representation

of these views from the underlying resource flow graphs. All the performance and time

measures in this chapter were computing using an implementation in Parlanse, running on

a 500Mhz Pentium III processor with 512Mb of memory.

5.1 Context

For the purposes of this case study, we restrict our interest to program comprehension and

reverse engineering. Specifically, our goal is to evaluate the FADE paradigm in producing

visualizations that can be used by software engineers in the task of comprehending and

classifying sections of an existing software system. In this section we present the context

of our evaluation.

5.1.1 The Bauhaus Project

In this Chapter we investigate the drawing, abstract representation and measurement of

a range of medium to large graphs from the “Bauhaus Project”. The Bauhaus project

is a research collaboration between the Institute for Computer Science of the University

of Stuttgart (ICS) and the Fraunhofer Institute for Experimental Software Engineering in

Kaiserslautern (IESE). These graphs have been used in the detection of components from

“legacy software systems” by automatic and semi-automatic means. This work on archi-

tecture recovery showed that automatic component discovery is at best only moderately

successful. One proposed refinement is to integrate the user, using a visual tool, into the
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component discovery loop.

For the purposes of this thesis, we focus on five issues in this case study:

The visualization and abstract representation of the overall structures and edge sets

in these graphs.

Discussion of the drawings and their abstract representations, in terms of their po-

tential in component discovery.

The measurement of various aesthetics of the final drawing and some horizon draw-

ings (abstract representations), introduced in Chapter 2.

The performance measurement of the primary layout algorithm (FADE2D) from our

FADE paradigm, introduced in Chapter 4.

The use of our hierarchical compound graph quality measures from Chapter 3, to

determine if there is progressive cycle of layout and clustering improvement with

this class of data.

5.1.2 Reverse Engineering

A legacy software system is an older application program which continues to be used be-

cause the cost of replacing it or redesigning it is prohibitive [247]. Such systems are main-

tained and updated, to repair or add new features as required, although they are often large,

monolithic, and difficult to modify. Lehman hypothesized that “a program used in a real

world environment must change (adapt) or become progressively less useful in that envi-

ronment”. His hypothesis is born out in practice where an organization evolves its software

systems to meet the changing business environment. Software evolution, rather than total

re-development, is now standard for most of the business software systems in use. Busi-

nesses have to come to realize that their code represents a valuable commercial asset rather

than being a disposal commodity.

A large percentage of software engineering activity deals with such legacy systems,

as opposed to from scratch software development (forward engineering). Further, most
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programmers work on software that other people have designed and developed. As such,

existing research has shown that up to 50% of a software evolvers time can be spent deter-

mining the intent of source code [202]. Clearly, supporting this task to enhance the ability

of a software engineer to effectively analyze such legacy software systems is an important

task.

Globally, there are many billions of lines of legacy code undergoing constant evolution.

It is this code that current software engineers must deal with, rather than any idealized

software system of the future. Software evolution continues to be an ad-hoc, haphazard,

and often undocumented process of continual change. Corporate culture seems to accept

this chaotic approach with studies showing that less than one in five companies maintain a

complete application inventory, less than one in 30 know the rate at which their code bases

are changing, and less than one in 100 companies collect quality information about their

software projects [245].

There are several unfortunate side effects to this pervasive attitude in software evolu-

tion:

Often the code is the only reliable description of the software system.

Existing documentation does not typically reflect the software system currently in

use, that is, it is out of date.

Whatever original design took place, if any, tends to become more complex and less

structured over time.

It is often only the software itself that reliably encodes the business rules of an orga-

nization.

These effects are often seen in practice and have given rise to the need for program

understanding or program comprehension techniques. These techniques typically require

manual effort before any higher level abstract concepts can be formed by “Reverse Engi-

neering”. Reverse Engineering is the process of analyzing a subject system to identify the

system’s components and their interrelationships, and create representations of the system
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in another form or at a higher level of abstraction [49]. “Component discovery” is one type

of reverse engineering analysis.

5.1.3 Component Discovery

In OO terms an object is an instance of a class with methods and attributes. A component

is an instance of a class description with generic methods through which it can advertise

the functionality it supports to the system into which it is loaded. Instead of relying on

these definitions, we use Koschke’s terminology for components, which we now review.

A component is a computational element of a larger system. A connector links or

holds together components. According to Koschke [163], an atomic component is a low-

level software component (non-hierarchical) built from types, variables, and functions.

A further distinction, between two kinds of atomic components, namely “Abstract Data

Types” (ADT) and “Abstract Data Objects” (ADO) can be made as follow. An abstract

data type is in an encapsulated abstraction from which instances of that type can be cre-

ated. An abstract data object consists of a set of primitive variables and constants along

with routines. There is only one instance of an ADO since the developer has not placed this

into a grouping such as an ADT. Along with atomic components, connectors describe the

interactions or communication between these components. Depending on the language,

connectors include: pipes, method calls, shared variables, sockets, and files. At higher

levels of abstraction, atomic components can be connectors between more abstract archi-

tectural elements. Finally, a hybrid component is a state-based ADT or an ADO with a

subordinated type.

In an attempt to identify and classify the knowledge embodied in legacy systems,

Koschke presents a framework for the comparison of automatic and semi-automatic atomic

component identification techniques [163]. These techniques aid in the identification of the

components of a software architecture.

The purpose of this case study is to investigate whether the FADE paradigm is suit-

able for visualizing the software views described in [163] to aid in low level component

identification.
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Note that we do not directly address the related problem of “design recovery” [111].

Design recovery is the coupling of domain knowledge, external information, and deduction

to the observations of the subject system, to identify meaningful higher level abstractions

beyond those obtained directly by examining the system itself [49].

5.2 Description of Graphs in this case study

The data sets used in this case study are based on extracted elements and relations from

the static code analysis of 4 software systems. These systems are Bash, which contains

approximately 38,000 lines of code (38 Kloc), CVS (41 Kloc),Mosaic (37 Kloc) and Xaero

(31 Kloc) [163].

5.2.1 The Software

The Bourne-Again SHell (Bash) is a freeware Unix command interpreter. It provides fea-

tures such as: interactive command line editing, shell programming, prompt expansion, job

control, aliasing, and command history. The current version of Bash is 2.05, whereas this

analysis data comes from version 1.14.4. Given its open-source nature, Bash has a heavily

ported, modified, and maintained structure.

The open source Concurrent Versions System (CVS), is a tool to provide version con-

trol in individual or collaborative software development. Version controls allow a software

developer to retrieve an older version of the software. This is crucial for tracking and man-

aging the ongoing feature development of software. Instead of storing every past version

of every file, CVS only records the differences between versions (the deltas). Further, CVS

insulates different developers from each other. Each developer works on a local copy and

it is only later, on check in, that local copies are merged by CVS. This analysis data comes

from CVS Version 1.8.

XAERO is an X-windows Animation Editor for Realistic Object movements. It is

a physics based kinematic simulation and animation system based on rigid body models.

Xaero includes an editor for defining simple virtual scenes consisting of basic three di-
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Figure 5.1: “Entities” and their interrelationships. Reproduced by courtesy of Rainer Koschke
from [163]

mensional objects. These objects can be connected with links such as: springs, dampers,

rods, and joints. Along with the objects and connections, a user can define forces such as:

gravitation, air resistance, and friction along with other unnatural forces. Once the scene is

built and the forces defined, the scene can be animated through a series of timesteps. This

analysis data comes from Xaero Version 1.7.

Mosaic, from the National Center for Supercomputing Applications at the University

of Illinois, is an Internet information browser and WWW client. This software, which

is freely available for internal use, is no longer under development. The final version of

Mosaic supports HTML 3.2. This analysis data comes from Mosaic Version 3.0 on Unix.

5.2.2 Elements and Interrelationships

As noted in Section 5.1.1, our aim is to visualize, abstractly represent and measure our

FADE paradigm against the raw reference data produced by the Bauhaus project. These

resource flow graphs are output from a non-commercial off the shelf (NCOTS) reverse
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engineering tool called RIGI [265] from the University of Victoria in Canada. The source

code from each reference system is loaded into RIGI and then various static analyzes are

performed. This tool allows elements of the software to be identified such as procedures,

variables, constants, and subprograms. Further, static relationships such as calls and data

accesses, between these elements are identified and provided to the reverse engineer.

Koschke describes in greater detail the resource flow graphs in terms of the elements

(entities) and their interrelationships (see [163]). The suitability of an automatic clustering

technique is often dependent on the class and quality of the entity and relationship descrip-

tions available. For the purposes of this thesis, we describe, with reference to Figure 5.1,

only the entities and relationships of the views that we visualize.

a record consists of a group of logically related elements that form some collective

abstraction.

a record component is an element that is enclosed in a type declaration or

enclosed in an instance of a record.

is-part-of-type( , ): the type element is part of the declaration for type

element (this is a transitive relation).

parameter-of-type( , ): the sub-program has a formal parameter of type

.

return-type( , ): the sub-program returns a value of type .

variable-of-type( , ): the variable is of type .

member-of-type( , ): the element is of type .

parameter-of-type( , ): the sub-program has a formal parameter of type

.

local-var-of-type( , ): the sub-program has a local variable of type .

reference
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Subgraph Type (view) Edge types used
Type composite view is-part-of-type enclosing

Type usage view parameter-of-type return-type
member-of-type variable-of-type
local-var-of-type

Object reference view set use address
Signature view parameter-of-type return-type

Same expression view same-expression
Actual parameter view actual-parameter

Dominate view dominate

Table 5.1: Edge types from the resource flow graph used to form each view

(a) set( , ): the sub-program sets the value of .

(b) use( , ): the sub-program uses the value of .

(c) address( , ): the sub-program takes the address of .

actual-parameter( , ): the element is an actual parameter in a call to .

same-expression( , ): the element appears in the same expression as .

dominate( , ): the subprogram dominates the subprogram , as every path to

passes through .

Views

A resource flow graph or resource usage graph is a graph model that initially describes a

largely syntactic view of code [263, 265]. A view is a subgraph of the resource flow graph

representing some special aspect. In general, views can be used either to answer specific

questions or to perform high level analyses, such as those described in [42, 142, 163, 85,

174, 176, 188, 263, 265]. For example, a simple call view can aid in the automatic or user

guided detection of dead-code.

In this case study we present the visualization, abstract representation and measurement

of seven views extracted from resource flow graphs of Bash, CVS, Mosaic, and Xaero. The

seven elementary views are directly derived from the source code and have been used in

component discovery research. The edge relations for each view that must be extracted

from the resource flow graph are described in Table 5.1. These views include:
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A type composite view consists of type and record component nodes; this shows how

types are built. The Bash type composite view is shown in Figure 5.6, for CVS in

Figure 5.7, for Mosaic in Figure 5.8, and Xaero in Figure 5.9.

A type usage view consists of subprogram, type, variable and constant nodes; this

gives a cross-referenced view of the usage of types. The CVS type usage view is

shown in Figure 5.10.

An object reference view consists of subprogram, variable (object) and constant (ob-

ject) nodes; this gives an indication as to which variable or constants are accessed by

a particular subprogram. The data used in this case study only contains an approxi-

mation of this view. The underlying graph comes from a static data flow analysis of

the code, so all relationships explicitly declared in the code are included. The Bash

object reference view is shown in Figure 5.11, for Mosaic in Figure 5.12, and Xaero

in Figure 5.13.

A signature view consists of subprogram and type nodes; this specifies the parameter

interface of the subprograms. The Bash signature view is shown in Figure 5.2, for

CVS in Figure 5.5, for Mosaic in Figure 5.4, and Xaero in Figure 5.3.

A same expression view consists of variable and constant nodes; this shows which

entities occur in the same legal combination of symbols that represent a value, that

is, in the same expression. The CVS same expression view is shown in Figure 5.14.

An actual parameter view consists of subprogram, variable and constant nodes; this

shows exactly which variables or constants form the actual parameter values to a

given subprogram. The Bash actual parameter view is shown in Figure 5.15.

A dominance view consists of subprogram nodes; this gives an indication of which

subprograms strictly dominate each other, as described in Section 5.2.2. The CVS

dominance view is shown in Figure 5.16, for Mosaic in Figure 5.17, and Xaero in

Figure 5.18.
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Graph Type Bash CVS Mosaic Xaero

Type composite view 749 767
Type usage view 835 880

Object reference view 749 1275
Signature view 277 284

Same expression view 171 224
Actual parameter view 295 347

Dominate view NA NA

Table 5.2: Sizes of subgraph views, extracted in the Bauhaus project from four software systems.

Once each view has been formed, it can be described in simple combinatorial terms.

The number of nodes and edges from each view of each system in this case study are

described in Table 5.2.

5.3 The Experiments

To investigate the FADE progressive cycle in producing drawings and visual précis we

tested the FADE2D, WAVE-FRONT and FADE3D algorithms on the views described in Sec-

tion 5.2.

The results of this case study are presented in following five sections. First, we present

a picture gallery comparison of different final layouts produced by FADE2D and FADE3D

in Section 5.4. Second in Section 5.5 we present the hard graph drawing aesthetic mea-

sures of the layouts discussed in the picture gallery. Third, we present a variety of visual

précis drawings along with performance, clustering, and aesthetic measurements in Sec-

tion 5.6. Fourth, we present the errors versus time taken measurements, for a range of

approximations used with FADE2D in Section 5.7. And finally, in Section 5.8 we evaluate

the hierarchical graph clustering measures introduced in Chapter 3.

5.4 Results: Picture Gallery

The graphs in this case study typically consist of numerous disconnected subgraphs. Al-

though the layout of each subgraph can be computed separately, with a space decomposi-
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tion per subgraph, we choose to consider the entire graph in a single space decomposition.

This approach allows us to compare the performance and errors of our FADE paradigm

without consideration for the graph theoretic structures in each graph. Unfortunately, this

approach has serious consequences for the creation of high level visual précis, since dis-

connected subgraphs can be drawn with implied edges between them because of the nature

of the geometric clustering method used.

This conservative approach is taken to allow us to compare the results of our clustering,

aesthetic, and horizon measures between this case study and the matrix market case study

in Chapter 6. We further do not show any direction in the edges, to allow a fair comparison

with the drawings of undirected matrix data shown in Chapter refcase2. In practice, the

utility of such drawing would be much increased by the use of edge direction information

either in edge colour coding or by the use of arrows.

The drawings shown in Figures 5.2 to 5.18 are the result of applying either a two or

three dimensional wavefront layout to the graph, followed by a number of iterations of

FADE2D or FADE3D to further improve the drawing. Further drawings of these graphs are

included in Appendix A.

Distinct edge sets, within a particular graph, are colour coded. For example, Figure 5.2

is the drawing of a signature view extracted from the resource flow graph of Bash. This

view consists of return-type and parameter-of-type edges; each of which is

drawn with a distinct colour. For the purposes of consistency the edges in these graphs are

assigned uniform ideal edge lengths.
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Figure 5.2: Bash Signature View, with red return-type edges and green parameter-of-
type edges
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Figure 5.3: Xaero Signature View, with red return-type edges and green
parameter-of-type edges

Figure 5.4: Mosaic Signature View, with red return-type edges and green
parameter-of-type edges 1

aThe labels and in this and other figures are annotation used in the discussing the figure in Sec-
tion 5.4.1.
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Figure 5.5: CVS Signature View, with red return-type edges and green parameter-
of-type edges

Figure 5.6: Bash Type Composite View, with red enclosing edges and blue is-part-of-type edges
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Figure 5.7: CVS Type Composite View, with red enclosing edges and blue is-part-
of-type edges

Figure 5.8: Mosaic Type Composite View, with red enclosing edges and blue is-
part-of-type edges
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Figure 5.9: Xaero Type Composite View, with red enclosing edges and blue is-
part-of-type edges

Figure 5.10:
CVS Type Usage View, with red parameter-of-type, yellow return-
type, green member-of-type, cyan variable-of-type and blue
local-variable-of-type



5.4 Results: Picture Gallery 171

Figure 5.11: Bash Object Reference View (drawn with FADE3D), with red set, green
use,and blue address

Figure 5.12: Mosaic Object Reference View (drawn with FADE3D), with red set, green
use,and blue address
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Figure 5.13: Xaero Object Reference View (drawn with FADE3D), with red set, green
use,and blue address

Figure 5.14: CVS Same Expression View (drawn with FADE3D)
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Figure 5.15: Bash Actual Parameter View (drawn with FADE3D)
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Figure 5.16: CVS Dominance View

Figure 5.17: Mosaic Dominance View
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Figure 5.18: Xaero Dominance View



5.4 Results: Picture Gallery 176

5.4.1 Discussion

The subgraphs extracted from the resource flow graph of each software system represent

a view of the software. These views are used in a range of graph theoretic analyses of the

software systems. We do not provide a full analysis of the knowledge gained from such

visualizations, as exisiting work has shown the utility of such drawings, instead in this

discussion, our aim is to evaluate, in general terms, the use of the FADE paradigm for the

visualization of these extracted views.

The discussion of the results focuses on two areas:

The appropriateness of the FADE paradigm for the visualization of each graph type.

Discussion of individual graphs, in terms of structure, with reference to little domain

knowledge.

Type Composite Views

Providing a visualization of a type composite view to a reverse engineer or program evolver

should allow them to visually identify aspects of the structure of the composition of types

within a particular system. The evaluation of any understanding gained is outside the scope

of this thesis, instead we restrict our interest to general discussion of the potential of such

visualizations.

Using the FADE visualizations we first note that the is-part-of-type edges form

a spanning set of each sub-graph. This is an immediate and obvious observation, from

each of the visualizations in Figures 5.6, 5.7, 5.8, and 5.9 of the type composite view. In

each drawing the is-part-of-type edges form a visual backbone for the drawing,

whereas the enclosing edges form the visual hair to end-nodes which are record-

components. Nodes that are connected to such end-nodes are type nodes. Type

nodes have an is-part-of-type relationship to other type nodes.

In the FADE visualization of the Type Composite View of Bash shown in Figure 5.6, a

reverse engineer can easily identify a single large group of type nodes, along with several

smaller groups. The large group consists of two weakly connected regions of nodes, drawn

on the left. In an interactive visualization, a reverse engineer can query the names of
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the nodes. An obvious starting point for such queries can be the nodes linking the two

regions in the large subgraph. In this case, the type nodes connecting these regions relate

to process and job control.

In the FADE visualization of the Type Composite View of CVS shown in Figure 5.7,

there is one main subgraph with many is-part-of-type relationships. This visual-

ization shows an example of why a reverse engineer may first filter the view. By filtering,

you can effectively ignore the many small subgraphs so as to focus on the larger groups.

In this case, the largest subgraph includes type nodes relating to client-state, ver-

sioning and streaming.

In the FADE visualization of the Type Composite View of Mosaic shown in Figure 5.8,

there are two major connected groups labeled and connected through one node. Other

groups of nodes have been labeled to facilitate discussion. Likewise, and are only

weakly connected. As with the Bash type composite view, reverse engineers are typically

interested in locating such connection points, when starting to understand the software.

Such points of interest do not necessarily represent “software interfaces” but rather, are

signposts a reverse engineer can follow [188].

In this case, the single node connecting to is a process-id type. The large

group at pertains to XM and X11 types with a strong coupling to user defined types in

Mosaic. XM is a Motif widget with functions capable of displaying HTML 3.2 and image

formats such as GIF and PNG. The group denoted by relates to process control,

file control, streams and queues. The sub-grouping denoted by contains types

related to JPEG image handling.

The Xaero Type Composite View shown in Figure 5.9 includes large subgraphs. Such

large disconnected groups are of particular interest to a reverse engineer, as they represent a

very clear decoupling between the types in use. Categorization of each grouping can aid in

the overall process of understanding. In this case, the large grouping on the left represents

X11 types and the large group on the right includes modeling types, such as: vectors,

spheres, cylinders, forces, material, and colour.

A visualization such as that in FADE, where nodes that are adjacent are drawn close

together, allows the reverse engineer to quickly identify high level groupings in the type
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composition within a particular system. However, the granularity of the understanding

gained from such a visualization is difficult to measure.

Type Usage Views

The appropriateness of our FADE drawing of this class of view, which contains more edges

than any of the other classes, is not immediately apparent. A reverse engineer can however

use such a visualization to query nodes not connected to a major group. For example,

in Figure 5.10 if a variable or constant is not associated with the major component, then

it typically has a members-of-type relationship (drawn in green) with its associated

type.

Object Reference Views

Providing a visualization of an object reference view to a reverse engineer or program

evolver should allow them to visually identify aspects of the structure of interactions be-

tween groups of elements within the system, at a very approximate level. Such visualiza-

tions typically exhibit large amounts of local interactions along with a few interactions to

other collections of nodes. As with the type composite view, identification of the connect-

ing nodes and categorization of the groups can form an essential part in the understanding

of the system.

An example of this is shown in Figure 5.13. Appendix A includes a video of this three

dimensional graph drawing, along with the model itself. Here, there is one large group,

connected to two other smaller groups. Both of those groups are further connected to a

third group.

The largest group, is a good example of where the FADE paradigm fails. Here there are

many tightly connected nodes which results in a combinatorial subgraph structure with low

diameter, which is difficult to draw using force directed methods. Although this is a poor

drawing of this subgraph, overall the other subgraph structures and their interrelationships

are evident in this drawing. The largest group is connected to two of the smaller groups,

only by address edges. The smaller subgraphs consist primarily of set and use edges.
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Examination of the nodes, in this example, reveals a rich array of domain specific

aspects about which nodes are interacting and what the names of those nodes are. For

example, the small group on the top left of Figure 5.13 contains collision detection and

scene configuration subprograms.

Signature Views

Signature views provide an overview of how sophisticated or complex the type usage is

within a particular program. Such visualizations aid in the identification of the structure of

subprogram type usage.

Such visualizations makes apparent several aspects of the underlying code:

The most heavily used types are easily identified.

Sub-programs using the same types, although not named the same or even co-located

in code, are drawn close together.

Distinct sub-groupings, which use only one or two types, are drawn as disconnected

graphical components.

Symmetry or asymmetry in the edge colouring, indicates the same usage pattern of

types by different sub-programs.

Certain types are used primarily to pass information to subprograms

(paramter-of-type), whereas others are primarily used to collect information

from subprograms (return-type).

The signature views of Bash, CVS, Mosaic, and Xaero show that most subprograms use

only one user defined type at a time, where the nodes of high degree are types. However,

there are a few sub-programs that use multiple types. The visual effect called barreling can

be seen where multiple subprograms use the same pair of types and the visual effect we

call cross baring occurs where subprograms use three or four user defined types.

Whereas Bash uses many user defined types both to pass and collect information from

sub-programs, CVS predominately uses user defined type to pass information to sub-

programs. This is evidenced by the fact that over 95% of subprograms that share types,
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do so with parameter-of-type edges only. Mosaic has 11 major types with some

clearly used for passing and others for collecting information from subprograms.

Artifacts of our drawing paradigm (denoted by and in Figure 5.4) are aptly demon-

strated in the signature view of Mosaic. The drawing of the shared types in section is

typical when the number of sub-programs that share two or more types represent less than

half of all the sub-programs using those types. Whereas section shows the effect when

the majority of nodes share two or more types. Due to the forces exerted in the FADE2D

algorithm, the type nodes are drawn close together in section which results in a large

number of edge crossings. Although aesthetically unappealing, it is visually apparent that

these two types are highly related.

In this case, both types XtPointer and Widget come from the X11 X-Windows GUI.

This should not be surprising, since Mosaic is a graphical WWW client.

Xaero has a few types which are predominately used for passing information to sub-

programs. Here a reverse engineer can focus on the nodes connecting the sections of the

graph to build an understanding of what components are in this system.

The type usage in Mosaic and Xaero indicates that vast majority of subprograms that

interact with the user interface types do not use other types, this indicates low coupling.

Those subprograms that do interact with other types and the user interface types may be

good candidates for interface inspection.

Other Views

The other three views in this case study, namely the same expression view, the actual

parameter view and the dominate view are based on either small or very simple graphs.

These views are suitable for interactive querying or filtering to locate a node or set of

nodes. In terms of aiding in identifying structures in the code it is unclear if these views

help.

Conclusions

As discussed in Section 2.2.6, the FADE paradigm tends to produce drawings where the

natural clusters and structures are visually apparent. For a reverse engineer, each view
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bash Signature view 279 286 39 1.037 .002 .075 .431 .706
cvs Signature view 299 307 32 1.041 .001 .14 .453 .673
mosaic Signature view 491 568 1045 1.308 .001 .094 .154 .271
xaero Signature view 481 803 7632 1.238 0. .028 .045 .12
bash Type Composite View 749 767 727 1.334 0. .006 .11 .3
cvs Type Composite View 1139 1137 1195 1.307 .001 .147 .134 .307
mosaic Type Composite View 4642 5197 36859 1.2 .001 .048 .013 .096
xaero Type Composite View 1804 2069 11518 1.099 0. .005 .032 .133
bash Type Usage View 837 882 4304 1.035 .001 .111 .054 .157
cvs Type Usage View 1087 1232 7634 1.181 .001 .088 .032 .119
mosaic Type Usage View 3087 3120 18076 1.051 0. .012 .019 .066
xaero Type Usage View 1960 2367 30318 1.113 0. .012 .02 .083
bash Object Reference View 749 1275 10922 1.087 0. .02 .039 .146
cvs Object Reference View 820 1386 17323 1.532 .001 .038 .02 .062
mosaic Object Reference View 446 725 3069 1.065 .001 .02 .015 .075
xaero Object Reference View 863 2690 121488 1.16 0. .006 .004 .032
bash Same Expression View 171 224 204 1.011 .012 .288 .132 .34
cvs Same Expression View 237 414 625 1.078 .005 .116 .056 .116
mosaic Same Expression View 24 12 0 1.373 .058 .988 .983 .988
xaero Same Expression View 244 430 679 1.161 .004 .088 .033 .098
bash Actual Parameter View 297 349 424 1.021 .003 .071 .124 .313
cvs Actual Parameter View 401 630 2563 1. .001 .011 .026 .073
mosaic Actual Parameter View 59 68 61 1.039 .019 .307 .177 .307
xaero Actual Parameter View 257 299 173 1.036 .01 .192 .078 .256

Table 5.3: Graph Drawing Aesthetic Measures of the final drawings

provides a unique insight into specific aspects of the structure of the system. Of particular

note are the natural clusterings and colour symmetries exhibited in the signature view and

the high level interaction groups in the object reference views.

5.5 Results: Graph Drawing Aesthetics

Table 5.3 gives the graph drawing aesthetic measures for the underlying graph drawings

shown in the picture gallery in Section 5.4.

5.5.1 Discussion

Table 5.3 indicates that object reference views consist of many strongly connected sets

of nodes, which result in strongly clustered groups with many edge crossings in the two
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dimensional drawings. Further, the drawings are typically displayed with a uniform aspect

ratio.

Due to the nature of the force model used in the FADE paradigm, disconnected sub-

graphs force each other apart slowly over many iterations. As such, iterating FADE a large

number of times quickly reduces the ratio of the minimum inter node distance to the maxi-

mum extent of the drawing. Although each edge has the same ideal length, the examples in

this case study show that the effect of the interacting forces can result in some edges being

elongated, see for example Figure 5.13. Table 5.4 shows that, depending on the structure of

the graph, some edges can be much longer than either the average or minimum edge length.

This negatively impacts on the goal that nodes with an edge between them should be drawn

close together. However, as Table 5.4 shows, the minimum edge length is typically close

to the average edge length in the drawing.

5.6 Results: Horizon Drawings (Visual Précis)

Figures 5.19 to 5.21 show example visual précis extracted from a hierarchical compound

graph of different views. The aim here is to assess whether such abstract representations

can be used by reverse engineers in studying the structures exhibited in the different visu-

alizations of the views. These graphs have highly connected subgraphs which are difficult

to draw using a force directed approach. Drawings of such subgraphs typically consist of

many nodes and edges packed into a small area or volume. The use of a pseudonode to ap-

proximate a highly connected subgraph often removes unnecessary detail while retaining

the overall visual shape of the structure that the reverse engineer wants to investigate.

As described in Section 3.11, horizon views provide a systematic means to investigate

different levels of abstraction of the hierarchical compound graph. Other views, such as

surface views or bell curve views, are suitable for interactive graph exploration, where a

small set of nodes must be drawn in detail along with their overall shared global neigh-

bourhood.

The discussion of the underlying drawings, in the previous section, emphasized the

need for an interactive visualization system. This system should support filtering, node
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Figure 5.19: Xaero Visual Précis of a Type Composite View

querying, and the ability to focus in on a small set of nodes; all these features can be

supported with different types of précis, as described in Section 3.11.

The number of possible précis that can be extracted from a hierarchical compound

graph is very large. Here we restrict our interest to the horizon level précis and the drawings

of the underlying graphs.

Table 5.4 shows the results of applying a range of graph drawing aesthetic measures to

each horizon level of the hierarchical compound graph. These measures are averaged over

100 FADE drawings of each graph. The number of clusters , implied edges , nodes

and edges is shown for each level, including the lowest level (that is, the entire graph).

Recall that the visual weight is the ratio of the sum of these four values to the number of

nodes and edges in the underlying graph. The - is the minimum distance between

any two nodes in the drawing of the graph.
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Figure 5.20: Section of a Bash Visual Précis of a Type Composite View



5.6 Results: Horizon Drawings (Visual Précis) 185

Figure 5.21: Xaero Visual Précis of an Object Reference View
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Table 5.4: Graph Drawing Aesthetic Measures of Visual Horizons of Various Views from

Bash, CVS, Mosaic and Xaero

Graph Name H
or
iz
on
Le
ve
l(

)

Cl
us
te
rs
(
)

Im
pl
ie
d
Ed
ge
s(

)

N
od
es
(
)

Ed
ge
s(

)

%
Vi
su
al
W
ei
gh
t(

)

Cr
os
sin
gs
(
)

A
sp
ec
tR
at
io
(

)

M
in

d
/M
ax
-d
im
(

)

M
in

d
/A
vg
Ed
ge
(

)

M
in
Ed
ge
/M
ax
Ed
ge
(

)

M
in
Ed
ge
/A
vg
Ed
ge
(

)

Mosaic 2 4 2 0 0 .6 0 1.088 .485 .631 .461 .631

signature 3 15 7 0 0 2.1 0 1.449 .03 .174 .072 .174

view 4 31 13 3 0 4.4 0 1.251 .016 .225 .115 .225

5 47 30 16 1 8.9 0 1.304 .012 .384 .162 .384

6 57 59 36 7 15. 2 1.306 .005 .226 .256 .538

7 81 128 84 25 30. 13 1.309 .004 .25 .185 .437

8 90 79 194 138 47.3 12 1.308 .001 .095 .19 .396

9 76 71 330 323 75.5 232 1.308 .002 .139 .242 .424

10 2 4 487 560 99.4 1037 1.308 .002 .14 .154 .271

11 0 0 491 568 100. 1045 1.308 .001 .094 .154 .271

Xaero 2 4 2 0 0 .2 0 1.588 .241 .554 .383 .554

Object 3 9 4 0 0 .4 0 1.278 .097 .601 .416 .601

Reference 4 16 8 1 0 .7 0 1.167 .043 .501 .291 .501

View 5 27 32 6 2 1.9 10 1.181 .009 .142 .05 .142

6 56 133 18 2 5.9 195 1.166 .007 .172 .046 .204

7 140 462 41 3 18.2 2598 1.152 .007 .227 .045 .256

8 218 1083 252 167 48.4 17268 1.153 .002 .089 .024 .171

9 82 768 670 1046 72.2 32388 1.16 .001 .042 .008 .068

10 26 496 807 1872 90.1 75400 1.16 .001 .027 .006 .045

11 8 105 847 2489 97.1 104822 1.16 0. .006 .004 .032

12 0 0 863 2690 100. 121488 1.16 0. .006 .004 .032

Mosaic 2 3 2 0 0 .1 0 1.364 .514 .813 .685 .813

Type 3 8 7 0 0 .2 0 1.206 .11 .521 .424 .521

Composite 4 19 18 0 0 .4 1 1.15 .018 .197 .096 .197

View 5 43 46 0 0 .9 1 1.186 .011 .21 .176 .323

6 97 113 4 0 2.2 17 1.185 .009 .315 .125 .422

7 240 375 34 0 6.6 176 1.191 .003 .141 .063 .307

8 566 1088 201 47 19.3 1796 1.194 .002 .152 .031 .207

9 1042 1998 798 476 43.8 10062 1.201 .001 .116 .031 .242

10 773 1736 3049 2285 79.7 18054 1.2 .001 .061 .016 .125

11 0 0 4642 5197 100 36859 1.2 .001 .048 .013 .096

Xaero 2 4 3 0 0 .2 0 1.007 .383 .536 .772 .883

Type 3 9 7 2 0 .5 0 1.074 .095 .438 .296 .438

continued on next page
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Table 5.4: continued

Graph

Composite 4 23 17 2 0 1.1 1 1.16 .024 .325 .186 .325

View 5 55 46 3 0 2.7 2 1.094 .012 .245 .277 .463

6 110 122 25 0 6.6 11 1.101 .01 .388 .142 .389

7 185 320 112 22 16.5 92 1.087 .005 .284 .117 .417

8 313 612 314 230 37.9 1148 1.099 .002 .132 .083 .336

9 437 714 805 566 65.1 3790 1.099 .001 .11 .048 .19

10 11 27 1782 2017 99.1 10837 1.099 .001 .079 .032 .133

11 0 0 1804 2069 100. 11518 1.099 0. .005 .032 .133

Xaero 2 3 1 0 0 .1 0 1.223 .587 .827 1. 1.

Type 3 7 3 0 0 .2 0 1.18 .194 .897 .846 .897

Usage 4 15 8 0 0 .5 0 1.125 .039 .433 .268 .433

View 5 31 22 3 0 1.3 1 1.108 .01 .242 .244 .496

6 65 56 7 0 3. 3 1.108 .009 .336 .212 .377

7 139 134 24 0 6.9 20 1.114 .003 .187 .124 .37

8 239 308 144 21 16.4 347 1.109 .002 .192 .076 .286

9 249 487 511 324 36.2 2512 1.114 .001 .175 .071 .315

10 437 759 829 533 59. 8763 1.113 .001 .09 .031 .141

11 66 531 1824 1603 92.8 29803 1.113 0. .034 .023 .091

12 0 0 1960 2367 100. 30318 1.113 0. .012 .02 .083

CVS 2 4 6 0 0 1. 1 1.046 .794 .789 .612 .789

Actual 3 16 17 0 0 3.2 1 1.112 .118 .448 .271 .448

Parameter 4 43 47 6 2 9.4 3 1.003 .034 .331 .19 .331

View 5 76 134 36 7 24.4 81 1.01 .026 .378 .183 .379

6 94 305 158 87 62. 718 1. .009 .178 .069 .178

7 23 144 351 393 87.8 1481 1. .004 .08 .068 .188

8 4 16 391 602 97.6 2376 1. .001 .011 .026 .073

9 2 5 398 624 99.1 2547 1. .001 .011 .026 .073

10 0 0 403 632 100. 2563 1. .001 .011 .026 .073

Bash 2 4 1 0 0 .2 0 1.659 .194 1. 1. 1.

Object 3 12 5 0 0 .8 0 1.044 .144 .696 .473 .696

Reference 4 26 20 4 0 2.5 1 1.014 .04 .352 .195 .352

View 5 55 66 15 1 6.8 20 1.061 .011 .173 .105 .248

6 104 227 35 4 18.3 300 1.091 .012 .288 .115 .288

7 174 595 171 93 51. 3214 1.087 .007 .245 .102 .339

8 92 475 552 536 81.8 5031 1.087 .002 .1 .068 .242

9 7 56 735 1197 98.6 9990 1.087 .001 .059 .039 .147

10 1 32 747 1242 99.9 10869 1.087 .001 .037 .039 .146

11 0 0 749 1275 100. 10922 1.087 0. .02 .039 .146
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5.6.1 Discussion

The quality of these horizon drawings are measured using a variety of graph drawing aes-

thetic measures. These abstract representations should also adhere to the multilevel aes-

thetic measures described in Section 2.2.2, namely:

Minimize the introduction of edge crossings by abstraction.

Glyphs representing groups of nodes should not overlap.

Minimize the variance in abstraction aspect ratios.

From these results, it is clear that abstraction typically greatly reduces the number of

edge crossings as many edges which cause crossings are elided in such drawings. The

glyphs used to represent each pseudo-node are constrained to have a radius of at most half

the width of the cell. This constraint ensures that no two glyphs, in two or three dimensions

overlap in a visual précis. From Table 5.4, we see that the aspect ratio of each horizon level

remains approximately uniform for each graph.

The results support the notion that higher level visual précis of horizons are better

graph drawings than the drawings of the underlying graphs. Typically, for each graph the

number of crossings in the higher level visual précis is much smaller than the number in

the drawing of the graph.

Some remarks are in order.

As with any abstraction, the higher level précis do contain higher level structural

information of the software, and this is well displayed by the visualization.

In an interactive system a user may define the maximum number of graphical ele-

ments or visual weight they require the initial visual précis to contain. The visual

weight measure can therefore can be used to determine which horizon level is ini-

tially drawn.

Table 5.4 also indicates that the bottom levels of the tree show the greatest amount

of node clustering, which the is the intuition behind our measure, the results of

which are presented in Section 5.8 below.
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Figure 5.22: Performance versus Error of FADE2D for TUV of Mosaic

5.7 Results: Time and Error Performance

Here we present the results of a performance and error analysis of the FADE2D algorithm

with a Min distance cell opening criterion and varying values of on the range of views

extracted from the resource flow graphs in this case study.

Figures 5.23 to 5.40 show charts of the performance versus error tables, for some of the

graphs in this case study, the remainder are included in Appendix B. Figure 5.22 shows a

representative chart. The following three measures appear in each chart:

The time per iteration of FADE2D is shown as the blue line .

The nonedge error as compared with the direct node-to-node nonedge force calcula-

tion is shown as the orange line . These results are averaged in two ways. First the

error, for a given , is averaged over a sampling of the application of FADE2D from

the first 400 runs. Second, the initial layout is randomized 100 times and the above

average is computed again for each initial layout.

The brown line is the averaged error for the first 400 iterations of FADE2D.
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Figure 5.23: Performance versus Error
of FADE2D for APV of Bash
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Figure 5.24: Performance versus Error
of FADE2D for SEV of Bash
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Figure 5.25: Performance versus Error
of FADE2D for SIG of Bash
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Figure 5.26: Performance versus Error
of FADE2D for ORV of Bash
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Figure 5.27: Performance versus Error
of FADE2D for TUV of Bash
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Figure 5.28: Performance versus Error
of FADE2D for TCV of Bash
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Figure 5.29: Performance versus Error
of FADE2D for APV of CVS
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Figure 5.30: Performance versus Error
of FADE2D for SEV of CVS
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Figure 5.31: Performance versus Error
of FADE2D for SIG of CVS
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Figure 5.32: Performance versus Error
of FADE2D for ORV of CVS
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Figure 5.33: Performance versus Error
of FADE2D for TUV of CVS
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Figure 5.34: Performance versus Error
of FADE2D for TCV of CVS
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Figure 5.35: Performance versus Error
of FADE2D for APV of Mosaic
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Figure 5.36: Performance versus Error
of FADE2D for SEV of Mosaic
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Figure 5.37: Performance versus Error
of FADE2D for SIG of Mosaic
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Figure 5.38: Performance versus Error
of FADE2D for ORV of Mosaic
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Figure 5.39: Performance versus Error
of FADE2D for TUV of Mosaic
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Figure 5.40: Performance versus Error
of FADE2D for TCV of Mosaic
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5.7.1 Discussion

The performance of FADE2D improves as the value for decreases, due the more approx-

imate nonedge force calculations and less direct node-to-node nonedge force calculations.

However, the error in the overall force calculation also increases as increases. These

values are in line with the predicted values from particle simulation work. FADE is not

suitable for small graphs, such as Figures 5.35 and 5.36 where the error rises dramatically

at a value of which is proportional to the maximum dimension and the length of the ideal

edge. This sudden jump is less pronounced in the slightly larger graphs. It should be noted

that for larger values of the error increases but this is not strictly correlated with any lack

of improvement of the layout.

Given that the edge forces dampen these nonedge force errors, it is often permissible

to have a value of in the range - . Such error rates are catastrophic in particle

simulation and lead to highly inaccurate final positions for the particles in the simulation.

We can deduce a clear guideline for graph drawing systems using the FADE paradigm:

they should allow the user to alter various parameters, such as the value of , the cell

opening criterion used, the dimension, and the arity of the space decomposition.

5.8 Results: Clustering Measures

Here we present the results of applying the hierarchical compound graph quality measures,

introduced in Section 3.5, to layouts produced across the first 300 iterations of the FADE2D

algorithm. Here we use the - cell opening criterion and a value of on the

range of views extracted from the resource flow graphs in this case study.

Figure 5.46 to Figure 5.53 show charts of the normalized clustering measures versus

crossings, for some of the graphs in this case study. Further charts are shown in Ap-

pendix B.

Figure 5.41 shows an example of one of the charts from the results of applying these

measures to a graph in this case study. These results are averaged over sets of runs of

the FADE2D algorithm. In each case, the graph is given an initial random layout to ensure
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Figure 5.41: HCGQM versus Crossingsfor ORV (Mosaic)

a uniform starting point for each layout process.

The values of hierarchical clustering quality measures are indicated as normalised val-

ues according to the right hand axis. Each measure is colour coded as follows:

The Implied Edge Precision ( ) measure is drawn with an orange line.

The Lowest Common Ancestor ( ) measure is drawn with an blue line.

The Coupling and Cohesion ( ) measure is drawn with an red line.

The Node Neighbourhood Similarity ( ) measure is drawn with a brown line.

The number of edge crossings in the layout is indicated on the left hand axis and is drawn

as a green line in each chart.
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Figure 5.42: HCGQM versus Crossings
for TCV (Mosaic)
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Figure 5.43: HCGQM versus Crossings
for TCV (Xaero)
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Figure 5.44: HCGQM versus Crossings
for TUV (Mosaic)
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Figure 5.45: HCGQM versus Crossings
for TUV (Xaero)
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Figure 5.46: HCGQM versus Crossings
for TCV(CVS)
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Figure 5.47: HCGQM versus Crossings
for ORV (Xaero)
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Figure 5.48: HCGQM versus Crossings
for SIG (Mosaic)
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Figure 5.49: HCGQM versus Crossings
for SIG (Xaero)
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Figure 5.50: HCGQM versus Crossings
for SEV (Mosaic)
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Figure 5.51: HCGQM versus Crossings
for SEV (Xaero)
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Figure 5.52: HCGQM versus Crossings
for APV (Mosaic)
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Figure 5.53: HCGQM versus Crossings
for APV (Xaero)
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5.8.1 Discussion

The hierarchical clustering quality measures have been applied during the first 300 iter-

ations of FADE2D in the progressive cycle. In this discussion our aim is to evaluate, in

general terms, the usefulness of our hierarchical compound graph quality measures for

these graphs for reverse engineering. Each chart also shows the number of edge crossings

in the layout, which steadily decreases as the progressive cycle iterates. As predicted, the

micro structure of the layout rapidly improves as indicated by the increase in each measure

over the first 60 iterations.

Given this data comes from a software system, where the aim of a good design is

to produce components with strong cohesion and low coupling, our classical geometric

Coupling and Cohesion measure ( ) provides a good indication as to quality of a

particular layout. Here the measure indicates the ratio of the number of edges

inside each cluster to those crossing a cluster boundary, on every level of the inclusion

tree. This measure steadily increases as the FADE2D algorithm is applied. This indicates

that the forces, when applied, cause the layout to form into the underlying clusters in the

data. This process exhibits the natural clusters as shown in the picture gallery. The results

of the measure in this case study, are in stark contrast to the results in the matrix

market case study. Here the underlying data contains clusters one hopes to visualize where

as the matrix market data is often highly uniform, without clusters and as such exhibits low

values for the measure.

The measure gives a general indication as to the overall quality of the horizon

level précis in the hierarchical compound graph. A value of 1, indicates that every implied

edge represents a true path between every pair of nodes in each cluster. However, due to

regular nature of the space decomposition used, some clusters contain unconnected nodes.

Here this measure is computed on a single space decomposition, ignoring the fact that the

graphs contain many disconnected subgraphs. As a result, for graphs with a large number

of small disconnected subgraphs the value for the is low, whereas for connected

graphs the measure is often high. The higher the value for , the greater confidence in

a visual précis, since it is a more accurate representation.
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The measure is difficult to interpret. It should provide an indication as to the

clustering depth of each edge in the hierarchical compound graph, that is, on average how

far up the tree do edges cause implied edges. These results indicate that the does

improve as the layout improves but also that the measure itself may be badly normalised.

The provides a measure for how strongly interconnected nodes are within a

cluster. Given this is real world data of various structural views of a software system one

does not expect every entity in every cluster to access one another. Here the value of

increases quickly to a small value which indicates that on average nodes in a layout of each

cluster are related to a few other nodes but not all the nodes in the cluster.

Overall, the measures steadily increase to a plateau which supports the hypothesis that

as the quality of the drawing improves (measured here by edge crossings), the quality of

the clustering exhibited by the layout also improves.

5.9 Remarks

This Chapter has presented a software visualization case study using the FADE paradigm

for large graph drawing. These results shown that the FADE paradigm proceeds by making

small iterative changes to the layout of the graph which improves the values of the hierar-

chical compound graph quality measures. As the layout improves groups of related nodes

are drawn together, whereas unrelated nodes are typically drawn far apart. Drawings of

such layouts tend to exhibit the natural clusterings of the graph.

Overall, we have demonstrated how the FADE paradigm provides a fast layout method

coupled with abstract representation and measurement for a reverse engineer analyzing a

software system.
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Case Study II: Matrix Market Visualizations

“Intuition becomes increasingly valuable in the new information society pre-

cisely because there is so much data.” - John Naisbitt

Numerical matrix data is used in comparative studies of algorithms for numerical linear

algebra applications in a range of domains. Examples of such domains include, Chemical

Engineering, Computer System Simulation, Finite Element Analysis, and Power System

Networks. The Matrix Market is a repository of such test matrix data [29]. This repository

consists of 482 sparse matrices, from different application domains.

This Chapter is arranged as follows. Section 6.1 provides the context for this case study

and outlines issues addressed using this matrix data. A brief synopsis of the background

details of each matrix class is given in Section 6.2. Section 6.3 contrasts the drawings pro-

duced with the FADE paradigm and existing structure and cityplot visualizations along with

a comparative review of alternate layout methods in Section 6.3.1. The results of this case

study are presented in Sections 6.5 to 6.9. A picture gallery, comparing and contrasting

existing structure and cityplot visualizations, with drawings produced by FADE2D is given

in Section 6.5. Section 6.5.1 presents a discussion of the picture gallery results in struc-

tural terms rather than according to any application domain specific analyses. Section 6.6

provides the graph drawing aesthetic measures and a discussion of these results.

In Section 6.7 the results of applying the graph drawing aesthetic measures to the hori-

zon level précis of these graphs are presented along with a discussion of these results in

Section 6.7.1. Two class of performance versus error charts are given in Section 6.8 along

with a discussion of them.
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The results of the hierarchical compound graph quality measures, applied to these

graphs, are given in Section 6.9 along with a discussion of these results in Section 6.9.1.

6.1 Context

For the purposes of this case study, we restrict our interest to forming visual representa-

tions of this data rather than application domain specific analysis of the results produced.

Specifically, our goal is to evaluate the FADE paradigm in rapidly producing graph draw-

ings and visual précis of the structured, semi-structured and high clustered data contained

in this repository. The graph drawing and visual précis can be used by data analysts in the

task of studying the data to discover patterns or inconsistencies. In this section we present

the context of our evaluation.

6.1.1 The Matrix Market

In this Chapter we investigate the drawing, abstract representation and measurement of a

range of medium to large graphs from the Matrix Market. The Matrix Market is a compo-

nent of the NIST (National Institute of Standards and Technology, USA) project on Tools

for Evaluation of Mathematical and Statistical Software which has focus areas in linear

algebra, special functions and statistics. Within the Matrix Market these matrices are visu-

alized as both two dimensional “structure plots” and three dimensional “cityplots”. Here

we aim to use our FADE drawing and visual abstraction paradigm to represent these data

sets as large graph drawing coupled with an analysis according to our hierarchical com-

pound graph quality measures.

For the purposes of this thesis, we focus on five issues in this case study:

The visualization and abstract representation of these matrix data sets as graphs with

nodes and edge strengths.

Discussion of the drawings and their abstract representations, in terms of their ability

to visually show the natural clusters or patterns in the data.



6.1 Context 201

Label the rows and columns of the matrix from -

If , then there is an edge from to

The edges from this matrix are, (A-B, A-D, B-D, B-E, D-E)

The nodes from this matrix are, (A,B,C,D,E)

Figure 6.1: A matrix represented as an undirected graph

The measurement of various aesthetics of the final drawing and horizon drawings,

introduced in Chapter 2.

The performance measurement of the primary layout algorithm (FADE2D) from our

FADE paradigm, introduced in Chapter 4.

The use of our hierarchical compound graph quality measures introduced in Chap-

ter 3, to determine if there is progressive cycle of layout and clustering improvement

in this class of structured, semi-structured and clustered data.

6.1.2 Matrix Data

The data in this case study comes in the form of a matrix description. Amatrix is a square or

rectangular arrangement of symbols or numbers, in rows or columns, used to summarize

the relationships between different entities. Matrices are used for various mathematical

operations, such as representing the coefficients of simultaneous linear equations. A square

matrix represents an adjacency matrix of a graph with n nodes. The entry

of the matrix is the strength or number of edges from node u to node v. A symmetric

adjacency matrix represents an undirected graph, whereas an non-symmetric adjacency

matrix represents a directed graph. An example of representing a symmetric matrix as a

graph of nodes and edges is shown in Figure 6.1.

For the purposes of this thesis we are interested in drawing, abstractly representing

and measuring large simple undirected graphs. The matrix market data sets do not contain

multiple edges but rather edge strengths. The matrices do contain self-loops and in a few

cases the graphs are directed. In this case study we treat all matrices as simple undirected

graphs with edge strengths, that is, as attributed graphs.
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Many of these data sets have already been visualized, by other researchers, with sim-

ple three dimensional “cityscape plots” or two dimensional “surface plots”. The FADE

paradigm introduced in Chapter 4 introduces several new ways to visualize and abstractly

represent this data, which we will compare and contrast with the original visualizations.

Most of the graphs in this collection are non-planar and as such, might be amenable to

three dimensional layout and visualization.

6.2 Description of Graphs (matrix data) in this case study

We now present an overview of background details, and an explanation of each matrix

class. These matrices come from a wide variety of areas, from Chemical Engineering

to Computer Systems models. It is important to note that some of the graphs represent

geometric elements and their interrelationships; however the data available contains none

of this geometry, only the elements and the strength of the relations (if present). Other

graphs in this case study are of purely abstract elements and relations.

Power System Distribution Networks

A power grid or power system distribution network consists of power lines that distribute

electricity to consumers from a few high-voltage sources, such are coal fired power plants,

nuclear reactors and hydro-electric stations. These networks typically have a small number

of high-voltage electricity lines, which are connected to the sources of power. These lines

supply electricity to regional networks that eventually deliver power to customers. To

ensure redundancy in supply, the regional networks draw power from several high-voltage

lines, along with being connected to other regional networks. These networks represent

relational information, where nodes are power stations or sub-stations and the edges are

the electricity transmission lines. These graphs are very sparse but also quite irregular.

While the average degree is typically small, it is common to have a few nodes of very

high degree. These properties make it difficult to develop parallel algorithms for power

system simulations and applications in general. Several medium to large power system

distribution networks have been codified into sparse matrices in the Boeing Harwell set,
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which is part of the larger matrix market series. These matrices are often used to benchmark

parallel sparse linear algorithms or in incomplete factorization problems [19]. Examples

of graphs drawn from this set include 1138bus (Figure 6.25), bcspwr07 (Figure 6.21)

bcspwr09 (Figure 6.25) and bcspwr10 (Figure 6.27).

Bounded Finline Dielectric Waveguide

A waveguide is a device that acts as a conduit (channel) to guide the propagation of elec-

tromagnetic waves along a path defined by the physical structure of the guide. Physically,

a waveguide is a rectangular or circular pipe used to guide electromagnetic waves at mi-

crofrequencies. The electromagnetic field propagates lengthwise and in theory each wave

guide consists of perfect electric conductor (PEC) and dielectric (non conducting) struc-

tures. A finline waveguide is a bounded waveguide which operates extremely well in the

millimeter wave spectrum, that is, at microfrequencies. Waveguides are most often used to

connect the output of a radar amplifier to a horn or dish antenna.

The graphs in this set arise from the study of the propagating modes and magnetic field

profiles of a rectangular waveguide filled with dielectric and PEC structures [109, 258].

The electric and magnetic fields of an electromagnetic wave have a number of possible

arrangements when the wave is traveling through a waveguide. Each of these arrange-

ments is known as a mode of propagation. This graph set is called BFWAVE, and comes

from the Department of Electrical Engineering at the University of Kentucky [258]. The

nodes represent sample points and the edges represent the change in the strength of the

electromagnetic waves between those points.

Examples of graphs drawn from this set include bfw398a (Figure 6.29), bfw398b

(Figure 6.31), bfw782a (Figure 6.33), bfw62a (Appendix A), bfw782b (Appendix A).

Crystal Growth Simulation

Crystal growth is the study of the conditions for controlling the change of state of certain

chemical or physical properties, to grow crystal experimentally. These matrices are used to

determine the stability of the interfacial crystallization of a piece of solid crystal solidifying
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Figure 6.2: Square waveguide visualized as a normalised frequency, courtesy of Albert T. Gal-
ick [100]

from some undercooled melt [300]. The nodes represent sample points and the edges

represent the change in the stability of the substance between those points.

An example graph (cry10000) from this set is drawn in Figure 6.63. Here the change

in stability can readily be seen in the colour change across the edges in the top right part of

the graph drawing.

Square Dielectric Waveguide

Thematrices in this set relate to the same general class of waveguide structures as described

in Section 6.2. However, unlike the finline dielectric waveguides, here the waveguide

consists of a dielectric material surrounded by another dielectric material with a lower

refractive index, such as an optical fiber surrounded by air. These waveguide problems

arise in many integrated circuit applications and these graphs represent the finite difference

discretisation of the magnetic field profiles. An alternate visualization of such a matrix is

shown in Figure 6.2.

Examples of graphs drawn from this set include dw2048 (Figure 6.35), dw8192 (Fig-

ure 6.39), dwa512 (Figure 6.47), and dwb512 (Figure 6.6).
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Dispersive Waveguide Structures

Unlike the other waveguide structures, these waveguides consist of conductors with finite

conductivity and cross section in a lossy dielectric medium. The “strength” of an edge

represents a conductivity measure. An example graph dwg961a from this set is drawn in

Figure 6.65.

Finite Element Approximation

An element is a basic building block of finite element analysis. Models are put together

from an assembly of elements. These matrices represent finite element approximations

of both physical and theoretical structures. The underlying geometry is absent in these

matrices and the edges represent varying diffusivity between elements. These matrices are

primarily used in finite element analysis, which is a modeling technique to discretize a

continuous geometric data set for analysis. In particular, the method is used to represent

the behavior of a structure under an external loading.

Examples of graphs drawn from this set include nos4 (Figure 6.49) and nos7 (Fig-

ure 6.53).

The Olmstead Model

The Olmstead model represents the flow of a layer of “viscoelastic fluid” heated from

below. A viscoelastic fluid is simply a liquid that has relatively high resistance to flow but

can easily resume its original shape after being stretched or expanded.

An example graph (olm1000) from this set is drawn in Figure 3.21.

Oceanic Modeling

These matrices are Platzman models which describe tidal motions in bays, enclosed basins

and in this case oceans. Here we have finite-difference models for the shallow wave equa-

tions of the Atlantic and Indian Oceans. The smaller matrix corresponds to the North

Atlantic Ocean. Here, as in Section 6.2, the geometry underpinning this data set has been
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stripped away. So the graph is simply a mathematical model describing the tidal motion of

water in various “channels”, between recording locations.

Examples of graphs drawn from this set include plat362 (Figure 6.43), plsk1919

(Figure 6.51), plskz362 (Figure 6.55), and plat1919 (Appendix A).

Small Signal Model

This collection comes from an application of the Hydro-Quebec power systems’ small-

signal model. These models are used in power system simulations and a variety of methods

are used to analyze the operation of such nonlinear devices. Typically the signal represents

small variations of current or voltage about motionless points. These matrices are highly

unbalanced, which presents significant problems for the parallelization of solvers to nu-

merical linear algebra problems.

Examples of graphs drawn from this set include qh1484 (Figure 6.57), qh768 (Fig-

ure 6.37), and qh882 (Figure 6.45).

Reaction-diffusion Brusselator Model

The Brusselator model, proposed by I. Pregogine et al., is often used to describe oscillating

chemical reactions [291]. The models in this collection are of 2D reaction-diffusionmodels

representing the concentrations of two reactions.

Examples of graphs drawn from this set include rdb3200l (Figure 6.59), rdb200

(Figure 4.24), rdb450 (Figure 3.31), rdb200l, rdb2048,rdb1250l, rdb2048l,

rdb800l, rdb968, rdb1250 (Appendix A).

Oil Reservoir Simulation

These matrices represent a system of linear equations extracted from oil reservoir modeling

programs. The models come from finite-difference approximation of a simulation model,

where the underlying geometry has been removed. These matrices were issued as a chal-

lenge to the petroleum industry and the numerical analysis community to find the fastest

solution to these sets of linear equations. The sets in this collection represent, Black oil
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Figure 6.3: A structure plot of dwb512 Figure 6.4: A cityplot of dwb512

simulation with shale barriers, a thermal simulation with steam injection, an IMPES sim-

ulation of a black oil model, an IMPES simulation with flow barriers, and a fully implicit

black oil model.

An example graph (sherman4) from this set is drawn in Figure 6.61.

6.3 Matrix Visualization and Graph Drawing

Visualization is clearly a useful tool for analyzing sparse matrix structures. Given the

format of the data, a natural style of visualization is to represent the matrix in two or three

dimensions, as shown in Figures 6.3 and 6.4 respectively. In two dimensions one possible

visualization is a structure plot, which consists of the nodes ordered along the - and -axes

with a ( ) grid point representing an edge. A structure plot is used to provide a quick

visual check on the sparsity pattern of a particular matrix. In three dimensions a visual

representation called a cityplot view can be used to visualize a matrix. Intuitively a matrix

cityplot view looks similar to large buildings in a city with a grid layout. Along with the

benefits of a structure plot, cityplots allow for a quick check of the relative magnitude of

matrix entries. In three dimensions an edge is represented as a vertical block. The height

and colour of each block represents the relative strength of the edge. The edges with the

highest relative strengths are drawn as the tallest positive blocks at the top of the colour

scale, whereas the edges with the lowest relative strengths are drawn as the tallest negative
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Domain Graph Name
Power systems network 1138bus 1138 1458

Western US power network bcspwr07 1612 2106
bcspwr09 1723 2394
bcspwr10 5300 8271

Bounded Finline Dielectric Waveguide bfw62a 62 200
bfw398a 398 1658
bfw398b 398 1256
bfw782a 782 3394
bfw782b 782 2600

Crystal Growth Simulation cry10000 3699 7164
Square Dielectric Waveguide dw2048 2048 4094

dw8192 8192 17404
dwa512 512 1004
dwb512 512 1024

Dispersive Waveguide Structures dwg961a 706 1350
FIDAP package graph fidap005 27 126

fidapm02 200 2805
Finite Element Approximation nos4 100 247

nos7 729 1944
The Olmstead Model olm1000 1000 1997
Oceanic modeling plat1919 1919 15240

plat362 362 2712
plsk1919 1919 4831
plskz362 362 880

Small Signal Model qh1484 1484 2492
qh768 768 1322
qh882 882 1533

Reaction-diffusion Brusselator Model rdb1250 1250 3025
rdb1250l 1250 3025
rdb200 200 460
rdb200l 200 460
rdb2048 2048 4992
rdb2048l 2048 4992
rdb3200l 3200 7840
rdb450 450 1065
rdb800l 800 1920
rdb968 968 2332

Oil reservoir simulation sherman4 1104 1341

Table 6.1: Combinatorial properties of the matrices used in this case study
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Figure 6.5: A matrix which the row and column orders are changed from a,b,c,d,e,f to a,d,b,e,c,f

blocks at the bottom of the colour scale. Structure and cityplot visualizations are primarily

used to access the quantity of edges in a particular matrix. This information is useful to

quickly determine the sparseness of a particular matrix or to visually compare the relative

sparsity of two different matrices.

Other analyses of such matrices are highly dependent on the relative ordering of the

rows and columns, as shown in Figure 6.5. The two matrices shown in Figure 6.5 represent

the same elements and interrelations. A structure plot or cityplot visualization of the first

matrix would easily show the two disjoint clusters of elements with the strong interrela-

tionships, whereas with a visualization of the second this fact would be different to discern

visually. The matrices in this data set have been pre-ordered to best represent the structure

of the set when displayed in two or three dimensions using a structure or cityplot visual-

ization. This pre-ordering, which is not used within our drawing paradigm, is in effect an

analysis step which occurs before the visual analysis commences. Once the matrices have

been ordered then the use of either the structure of cityplot view is appropriate.

Clearly there are numerous ways to represent the relative strengths of the relations

(edges) between two elements in the data set. In the structure plot view, the strength of a

relationship is hidden and only the fact that two nodes are connected is shown, regardless

of the strength or weakness of the relationship. In the cityplot view the relative strength

or weakness of a relationship is indicated by the height of the block above or below the

x,y plane. These blocks are also colour coded to further aid in the identification of groups,

patterns or repeating patterns. This approach is clearly advantageous if the exploratory

data analysis is concerned with issues such as; locating the strongest/weakest elements,

determining an overall view of relative relationship strength, and determining the local or
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global uniformity in relationship strengths.

Unlike these visualization approaches we take a “proximity” and “structure” view of

the data set. Instead of representing an element as row-column, we treat it as a node.

The relationship this element has with other nodes, is represented as an edge. Our visual-

ization paradigm aims to draw adjacent nodes close to each other along with non-adjacent

nodes being drawn far apart. The proximity of nodes in the drawing allows the viewer not

only to see the relationships but also how these relationships relate to other geometrically

close nodes and relationships. In our two dimensional drawings, the strength of a particular

relationship is coded according to a similar colour scale as that used in the cityplot visual-

izations. This approach makes it easier to visually compare and contrast the cityplot and

graph drawing visualizations. The structure and colour coding used in the graph drawing

approach allows large patterns, structures, groups, sub-graphs, and clusters to be readily

identified. Overall, our approach is useful for showing, on various levels of abstraction, the

major structures and patterns exhibited in these sparse matrices, rather than the classical

quantitative visual analysis which structure and cityplot visualizations are useful for.

The structure and cityplot visualizations are reproduced with the kind permission of

Dr. Ronald F. Boisvert of the Mathematical and Computational Sciences Division of the

Information Technology Laboratory at the National Institute of Standards and Technology,

who maintain the Matrix Market [29].

We now briefly introduce other layout methods that can be employed in the drawing of

the graphs from this data set.

6.3.1 Alternate Layouts

Other layout algorithms, not just those from FADE, can be employed to visualize these

graphs. The aim of this section is to compare and contrast the final drawings produced by

the FADE2D and FADE3D algorithms with the drawings produced by other two and three

dimensional layout methods. The comparisons made here are in terms of the quality of

the drawing (measured in terms of graph drawing aesthetics) and performance (measured

in time). The layout methods used in this comparison include a standard force directed
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Figure 6.6: Two views of dwb512b, drawn in three dimensions without edge strengths.

Figure 6.7: Two dimensional force
directed layout of dwa512, from AGD

Figure 6.8: Three dimensional force directed
layout (projected to 2D) of dwa512, from AGD

drawing method, a hierarchical drawing method, a planarized drawing method, a circular

drawing method, and a Tutte style drawing method.

The drawings produced by FADE, for example Figures 6.6 and 6.18, clearly show the

overall structure of the graph and the fact that it is composed of two related and connected

sub-graphs. The alternate drawings come from a graph drawing tool called AGD which

includes 18 possible layout algorithms that can be applied to graphs [2]. Unfortunately, due

to the nature of the graphs in this case study, that is, non-planar with irregular degree, only 5

layout algorithms can actually be applied. The algorithms include; spring embedder (force-

directed), planarization, circular, Sugiyama, and Tutte. We use dwa512 as an example in

this comparative review.
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Graph Nodes Edges FADE2D AGD
dwa512 512 1004 0.041 1.0 0.0956634
rdb1250 1250 3025 0.113 1.0 0.3507658
rdb2048 2048 4992 0.1892 1.0 0.5739804
cry10000 3699 7164 0.459 1.0 2.1683704
bcspwr10 5300 8271 0.573 1.0 2.8061264
dw8192 8192 17404 1.423 1.0 7.97195

Table 6.2: Time in seconds, to compute one iteration FADE2D with a particular theta, as compared
with one iteration of the spring layout in AGD. Here the time per run is averaged across the first
400 runs of each algorithm.

Fruchterman Reingold Force Directed Layout

The spring embedder layout provided in AGD is the classical Fruchterman Reingold grid

based refinement [97] to the original force directed layout algorithm of Eades [69]. As

AGD is a sophisticated and highly customizable graph drawing tool it would be unfair to

begin a comparison without first showing a comparable two and three dimensional force

directed layout produced by this tool. The results of applying this layout, in terms of graph

drawing aesthetics, are similar to the results obtained with FADE2D and 3DFADE, as one

would expect. However, our drawing paradigm also directly supports the generation of

multi-level views along with a greater computational efficiency. Our layout algorithm per-

forms approximately twice as fast even on the relatively small graph shown in line 1 of

table 6.2. The performance is seconds per iteration (at a % error) compared with

seconds per iteration for AGD. It should be noted that observational evidence sug-

gests the spring layout method in AGD contains further ad-hoc algorithmic refinements to

improve the performance of the basic Fruchterman Reingold force directed layout algo-

rithm. If the algorithm has been further refined then any comparisons using the data shown

in table 6.2 are invalid. Any comparison is attempting to compare two essentially different

algorithms, rather than two force approximation methods. For example, one hypothesis is

that in the early iterations in AGD it appears that only edge attractions are computed or that

very large grids are used. However without access to the implementation of this system, it

is impossible to verify this hypothesis.
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Figure 6.9: Hierarchical layout of dwa512 drawn with Sugiyama’s algorithm

Hierarchical Graph Drawing

The drawing shown in Figure 6.9 is a hierarchical graph drawing of dwa512, based on

Sugiyama’s algorithm as described in Section 2.2.3. This hierarchical drawing presents

a fair rendering of the graph, although it is difficult to tell that the graph consists of two

“sections”. Different crossingminimization steps such as median, split and siftingmake the

two sections of the graph more apparent but over reduce the visual balance. Regardless of

ranking assignment or the crossing minimization method used, it is impossible to recognize

the fact that the two sections are connected in a regular manner. In graph aesthetic terms

this drawing has good aspect ratio, good angular resolution, good edge length uniformity,

poor display of symmetry and has fewer edge crossings (678) than the FADE2D drawing in

Figure 6.18.

Circular Layout

The drawing shown in Figure 6.10 is a circular layout graph drawing. In graph aesthetic

terms this drawing has good aspect ratio, poor angular resolution, poor edge length unifor-

mity, poor display of symmetry and has many more edge crossings (4828) than the drawing
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Figure 6.10: A circular layout of dwa512, with the gap between the two sections illustrated

in Figure 6.18. However, unlike the hierarchical layout it is possible to see that there are

large sets of nodes which are only locally related to each other. And in examining the graph

very closely, it is possible to see that there are two “sections” separated by a gap. Finally,

as with the hierarchical layout it is difficult to tell that the two sections are connected in a

regular manner.

Tutte Force Directed Layout

The drawing shown in Figure 6.11 is circular force directed layout called a Tutte graph

drawing. In graph aesthetic terms this drawing has good aspect ratio, very poor angular

resolution, very poor edge length uniformity, very poor display of symmetry and has many

more edge crossings than the drawing in Figure 6.18. This is a very bad graph drawing

which definitely qualifies for Tuftes axiom that “...if a picture isn’t worth a thousand words,

the hell with it”.

Planarization Graph Drawing

Finally, the drawing shown in Figure 6.12 is a planarization graph drawing. In graph

aesthetic terms this drawing has good aspect ratio, very good angular resolution, poor

edge length uniformity, very poor display of symmetry and has few edge crossings (552).

According to all the aesthetic measures, this is a “good” drawing of the graph. However, it

is clear that by not displaying the symmetries and by not maintaining a uniform edge length

this drawing does not show the overall shape of the graph, nor the fact that it consists of two
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sections or the regular connection between the sections. In fact it would be a conceptual

challenge to attempt a cognitive mapping from the drawing in Figure 6.12 to the drawing

in Figure 6.6.
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Figure 6.11: A Tutte style layout of dwa512

Figure 6.12: A Planarization Style Layout of dwa512
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Figure 6.13: Initial random layout of
dwa512 with 42170 edge crossings

Figure 6.14: Layout of dwa512 after one itera-
tion of FADE2D with 33126 edge crossings

Figure 6.15: Layout of dwa512 after
30 iterations of FADE2D with 1178
edge crossings

Figure 6.16: Layout of dwa512 after 50 itera-
tions of FADE2D with 829 edge crossings

Figure 6.17: Layout of dwa512 after
80 iterations of FADE2D with 697
edge crossings

Figure 6.18: Layout of dwa512 after 140 itera-
tions of FADE2D with 661 edge crossings
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6.3.2 Initial Layout

The progressive cycle in the FADE paradigm, described in Chapter 4, requires an initial

layout of the graph. The quality of this initial layout may be important in determining the

quality and time required for the final layout.

Classical force directed layouts typically begin by assigning a random geometry (lay-

out) to the nodes of a graph, as shown in Figure 6.13. By all graph drawing aesthetic

measures (except for aspect ratio) this is a poor initial drawing of the graph. By randomly

positioning the nodes we introduce many more edge crossings than in the final drawing.

With this example we have 63 times as many edge crossings in the initial drawing as the

final drawing in Figure 6.18.

As we show in Section 6.9 the first few iterations of FADE2D rapidly decrease the

numbers of edge crossings and quickly improve each of the hierarchical compound graph

quality measures accordingly. As a starting point for comparing the change in quality, the

random layout is a uniformly bad initial layout. This means that we can fairly compare the

rate of improvement of quality measures if the initial layout is random.

As part of the discussion of our results, we show how other computationally inexpen-

sive heuristic layout methods based on the FADE paradigm, such as wave-front FADE can

be used to give a better initial layout. These layouts are often much closer, in terms of

energy, aesthetic measurement and clustering measurements, to the final drawings.

6.4 The Experiments

To investigate the FADE progressive cycle in producing drawings and visual précis we

tested the FADE2D, WAVE-FRONT and FADE3D algorithms on the matrices described in

Section 6.2.

The results of this case study are presented in following five sections. First, we present

a picture gallery of visual comparison between existing structure and cityplot visualiza-

tions and the layouts produced by a wavefront layout coupled with FADE2D in Section 6.5.

Second in Section 6.6 we present the hard graph drawing aesthetic measures of the FADE
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Figure 6.19: Colour range used to codify the weakest to strongest edges in the graph drawings
shown in Figures 6.25 to 6.57

layouts shown in the picture gallery. Third, we present a variety of visual précis drawings

along with performance, clustering and aesthetic measurements in Section 6.7, which are

described in Chapter 4. Fourth, we present the error versus time taken measurements and

error versus calculations measurement, for a range of approximations used with FADE2D

in Section 6.8, as outlined in Chapter 4. And finally, in Section 6.9 we compare the hierar-

chical graph clustering measures introduced in Chapter 3.

6.5 Results: Picture Gallery

The graphs in this case study typically consists of a single connected graph, rather than a

series of small disconnected subgraphs as in Chapter 5. Here we consider the entire graph

with a single space decomposition, which allows us to compare all the measures taken in

this case study with the software visualization case study results. Further, this approach

produces very accurate high level visual précis.

The final drawings shown here in Figures 6.21 to 6.57 and in Appendix A, are the

results of applying a wavefront layout to the graph, followed by a number of iterations

of a FADE method to further improve the drawing. Many of the graphs from the Matrix

Market contain strengths for each edge, where an edge strength is present this is coded as

a colour in the range red to purple, as shown in the colour scale in Figure 6.19. Where no

edge strengths are present, the edge is drawn as a black line. As in the previous case study,

we are only concerned with simple graphs with no self-edges and no multiple edges. This

compromise allows for the use of our FADE paradigm to represent the overall connectivity

and edge strengths. As a result, this case study deals with a general class of graphs from a

range of domains and compares them according to our aesthetic and clustering measures.

Many of these matrices in this case, when drawn as graph drawings are highly uni-

form and contain very regular structures. For example, the matrices from the Brusselator
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Figure 6.20: bcspwr07 as a structure plot Figure 6.21: bcspwr07 as a graph drawing

Figure 6.22: bcspwr09 as a structure plot Figure 6.23: bcspwr09 as a graph drawing

models are drawn as two overlapping grids with FADE2D and as a three dimensional mesh

structure with FADE3D. Domain knowledge of such regular combinatorial graph structures

should allow an analyst, working with such matrices, to choose a potentially faster layout

algorithm than those in the FADE paradigm. Recall that, domain knowledge of the graph

structure often suggests a particular layout method or an optimized heuristic to an existing

algorithm.
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Figure 6.24: 1138bus as a cityplot Figure 6.25: 1138bus as a graph drawing

Figure 6.26: bcspwr10 as a structure plot Figure 6.27: bcspwr10 as a graph drawing

Figure 6.28: bfw398a as a cityplot Figure 6.29: bfw398a as a graph drawing
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Figure 6.30: bfw398b as a cityplot Figure 6.31: bfw398b as a graph drawing

Figure 6.32: bfw782a as a cityplot Figure 6.33: bfw782a as a graph drawing

Figure 6.34: dw2048 as a cityplot Figure 6.35: dw2048 as a graph drawing
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Figure 6.36: qh768 as a cityplot Figure 6.37: qh768 as a graph drawing

Figure 6.38: dw8192 as a cityplot view Figure 6.39: dw8192 as a graph drawing

Figure 6.40: fidapm02 as a cityplot Figure 6.41: fidapm02 as a graph drawing
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Figure 6.42: plat362 as a cityplot view Figure 6.43: plat362 as a graph drawing

Figure 6.44: qh882 as a cityplot Figure 6.45: qh882 as a graph drawing

Figure 6.46: dwa512 as a cityplot Figure 6.47: dwa512 as a graph drawing



6.5 Results: Picture Gallery 225

Figure 6.48: nos4 as a cityplot Figure 6.49: nos4 as a graph drawing

Figure 6.50: plsk1919 as a cityplot Figure 6.51: plsk1919 as a graph drawing

Figure 6.52: nos7 as a structure plot Figure 6.53: nos7 as a graph drawing
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Figure 6.54: plskz362 as a cityplot Figure 6.55: plskz362 as a graph drawing

Figure 6.56: qh1484 as a cityplot Figure 6.57: qh1484 as a graph drawing

Figure 6.58: rdb3200l as a cityplot Figure 6.59: rdb3200l as a graph drawing

Figure 6.60: sherman4 as a cityplot Figure 6.61: sherman4 as a graph drawing
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Figure 6.62: cry10000 as a cityplot Figure 6.63: cry10000 as a graph drawing

Figure 6.64: dwg961a as a cityplot Figure 6.65: dwg961a as a graph drawing
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6.5.1 Discussion

Given the wide range of application domains these matrices are drawn from, a cross com-

parison in terms of usability requires domain knowledge, domain experts, and a through

interpretation of the visualization of each matrix. In this discussion, the aim is to evaluate,

in general terms, the use of the FADE paradigm for the visualization of these matrices rather

than any interpretation of the source of the data.

The discussion of the results focuses on five areas:

The appropriateness of the FADE paradigm for the visualization of these matrices

Comparison between the graph drawing approach and the approach taken with the

structure and cityplot views

Visually apparent Patterns

Visually apparent Symmetries

Visually apparent Clusters.

Most of the graphs, in this case study, are suitable for drawing with the FADE paradigm

in two or three dimensions as appropriate. However, graphs with low diameter, such as

that shown in Figure 6.41 are not suitable for drawing with the FADE paradigm. The force

model underpinning the FADE paradigm is not suitable for small world graphs, that is,

graphs with a large number of nodes and a small diameter (see [1]) . The layouts produced

for such graphs are typically rendered in a small volume or area to satisfy the force model,

which often results in many edge crossing and an aesthetically unappealing visualization.

Structure & Cityplot Views

Recall that the structure and cityplot views are often used to provide a quick visual check on

the sparsity pattern of a particular matrix and in three dimensions the relative magnitude of

matrix entries. The FADE approach also shows such information along with patterns, sym-

metries and clusters which we collectively refer to as structures in the drawing. However,
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since the structure and cityplot views are based on pre-ordered data paths, asymmetries and

directedness can often be seen.

The cityplot shown in Figure 6.24 displays little structure but it clearly shows the outly-

ing edges and the edges with the greatest or weakest relative strengths. The graph drawing

in Figure 6.25 does show a structure but identifying the strongest or weakest edges and the

edges not about the main diagonal is almost impossible.

Although clusters can be visually apparent in the structure plots, as in Figure 6.20 this

is dependent on the pre-ordering that has taken place in matrix. Figures 6.22, 6.26 show

structure plots with little indication of any clusters, although in the graph drawing several

natural clusters appear. This might be due to the ordering in the structure plot to emphasize

paths through the data which are shown as lines emanating from the main diagonal.

The cityplot drawing in Figure 6.30 gives little indication that the data consists of two

disconnected subgraphs, as shown in Figure 6.31. The cityplot views of the related matrices

in Figures 6.28, 6.30 and 6.28 appear similar but the graph drawings reveal aspects of the

true structures and how they differ. The connection between the two areas in the graphs,

drawn as the central edges in Figures 6.31 and 6.33, are not apparent in either of the cityplot

views although the strengths of these edges are.

Although the graph drawings shown in Figures 6.43, 6.51 and 6.61 have many edge

crossings, they do clearly show the overall structure or shape of the underlying graph data.

The cityplot views of these matrices show little of this structure. Any direct comparison

between the graph drawing and the cityplot views is difficult since the cityplot views are

devoid of any structures, patterns or symmetries which the graph drawings exhibit.

Clusters

Much of the data in this case study is uniform rather than consisting of clustered nodes.

However, although clustering is typically concerned with the grouping of similar nodes

and visualization of data with natural clusters aims to show them, here the edges are also

attributed and can be considered in the clustering of the data. In this case study often the

clustering appears where edges with the same strength are drawn close together without

reference to the nodes. We address such visual edge clustering in the next section.
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The structure plot, of the ordered data, shown in Figure 6.20 clearly shows clusters

of related nodes about the main diagonal of the matrix visualization. These clusters are

also visually apparent in the graph drawings. The graph drawings of the power system

networks, shown in Figures 6.21, 6.23 and 6.27 consist of edges with categories. Here the

natural node clusters, which are sometimes apparent in the structure plots, are quite evident

in the graph drawings. Clearly knowledge, such as the location of the nodes would greatly

assist a data analyst in using such a visualization for domain specific analyses.

The graph drawings of the power system simulation matrices shown in Figures 6.37, 6.45

and 6.57, are in stark contrast to the cityplot drawings. The graph drawings clearly show

the natural clusters and hence the overall structure and shape of this data. The cityplots in

Figures 6.36, 6.44 and 6.56 show only the distribution of relative edge strengths within the

matrix. This class of data provides a clear example of why domain knowledge about these

graphs is essential in any interpretation of the clusters displayed in the FADE drawings.

Although many of the visualizations display two sets of related data, connected in a

regular or semi regular manner, we leave the discussion of these to the patterns, and sym-

metries that the drawings display rather than focusssing on the two sets of data in each

drawing.

Patterns

FADE2D treats all of the graphs in this case study as undirected graphs without regard for

the combinatorial properties of the graphs itself. The patterns discussed in this section

pertain to both structural and colour, and often both.

The colour patterns in the Brusselator Model graph drawing, such as that in Figure 6.59,

simply reinforce the notion that this data consist of two subgraphs which are related in a

regular manner.

Figures 6.29, 6.31 and 6.33 from the bounded finline dielectric waveguide set display

several patterns each in terms of their structure and the colours of the edges. Each graph

consists of a similar micro structure, where nodes are drawn in a similar pattern in related

sets. Figure 6.31 first shows two subgraphs and within each subgraph there are two clear

colour patterns evident along with a regular repeating relationship pattern.
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Figures 6.35, 6.47, 6.39 and 6.6 from the square dielectric waveguide set each display

many patterns. Of note are the colour variation, the cross over pattern and the non-adjacent

nodes pattern. In each visualization the colour pattern provides a very regular transition

through areas of the graph drawing. In each case the absolute strength of the edges in-

creases closer to the area of cross over. However the increase is not uniform and the pattern

of increase itself a pattern. Some of the edges included in the cross over section are the

strongest in the entire graph.

For each graph drawing, there are clearly two related areas in the graph which are

connected by a relatively few number of edges in a cross over. In Figures 6.35, 6.47 and 6.6

this cross over is draw as a square pattern of nodes and edges forming a three dimensional

“pillow” when draw with FADE3D. The sets of nodes not close to the cross over nodes

typically form a symmetric layout, which is discussed in the next section.

Figures 6.37, 6.45 and 6.57 display a ladder like pattern within areas of the graph

drawing. Figures 6.51 and 6.61 display regular repeating patterns of coloured edges along

with a pattern of change in the colour values through the visualization.

Figure 6.49 contains a few categories of edges which form very clear patterns through

the graph. Likewise 6.65 has a few categories which form four visual patterns within the

graph drawing and the pattern from by the change in colour tone through the edges in

Figure 6.63 is quite apparent.

Symmetries

Many of these graphs exhibit highly symmetric layouts when drawn with the FADE paradigm.

This is similar to other force direct layout algorithms, which employ a force model. Here

the drawing display symmetry not only in the locations of the nodes but also in the strengths

of the edges. Difference or asymmetries, where they occur, are noticeable for the analysts

using the drawing produced by the FADE paradigm. Clearly, some of these graphs when

drawn with FADE3D have many more symmetries than when drawn with FADE2D.
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Conclusion

Here we have shown how the FADE2D algorithm produces drawings where the structures

such as, natural clusters, patterns, and symmetries in the graphs are apparent. For an

analyst, in a particular domain, these visualization provide a unique view of the matrix

data in terms of the structure, relationships, and clusters in the data. Of particular note is

the ability of the FADE paradigm to display the regular colour patterns and symmetries in

the underlying matrices.

6.6 Results: Graph Drawing Aesthetics

Table 6.3 gives the graph drawing aesthetic measures for the underlying graph drawings

shown in the picture gallery in Section 6.5.

6.6.1 Discussion

Table 6.3 indicates that many of these final layouts are aesthetically appealing given they

typically are drawn with very few edges crossings. As with the graphs in Chapter 5 here

the aspect ratio of these drawings is good. Again due to the force model used in the

FADE paradigm many of the edges can be elongated which results in the adjacent and

non-adjacent aesthetic measures being quite poor. In many of the drawings, there is a

macro relational structure (such as a grid) which constrains many of the nodes at a micro

level. This results in non-adjacent nodes being drawn close together, in two dimensions,

even though they are graph theoretically far apart. The results of the - -

aesthetic measure support the use of high level visual précis given the overall resolution

of the underlying drawings is low. Here the graph drawings show the overall structure but

this ignores the time it takes to render such large drawings. Given the average inter-node

distance is quite small and visual clumping takes place, the visual précis simply exploits

this fact when forming the visualization.
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dwa512 512 1004 621 1.16 0. .012 .4 .553
1138bus 1138 1458 756 1.077 .002 .063 .01 .063
rdb1250 1250 3025 1152 1.34 .006 .239 .494 .664
dw2048 2044 4079 4207 1.719 0. .013 .105 .34
qh1484 1482 2488 1186 1.029 .002 .068 .028 .221
dwg961a 706 1351 0 1.427 .01 .401 .27 .401
nos4 100 247 117 1.47 .009 .113 .121 .232
nos7 729 1944 6610 1.281 .01 .164 .988 .991
bfw782a 782 3394 7442 1.059 .001 .014 .004 .014
fidap005 27 126 398 1.947 .021 .092 .049 .092
plsk362 362 2712 14576 1.203 .002 .022 .009 .022
sherman4 1104 1468 1040 1.004 0. .127 .008 .127
plat1919 1919 15240 98153 1.466 0. .019 .006 .019
rdb968 968 2332 882 1.047 .013 .4 .926 .96
olm1000 1000 1997 55 1.21 .001 .141 .075 .141
olm1000 1919 4831 0 1.031 .004 .283 .129 .283
bfw62a 62 200 356 1.133 .019 .134 .052 .134
bfw398a 398 1256 2968 1.675 .004 .115 .294 .454
bfw782b 782 2600 3586 1.836 .001 .061 .03 .063
dwb512 512 1024 853 1.018 .014 .303 .073 .303
fidapm02 200 2805 388466 1.031 .003 .014 .005 .014
plat362 362 2712 14502 1.298 .004 .06 .025 .06
qh768 768 1322 721 1.528 .002 .089 .036 .185
qh882 882 1533 1175 1.045 .002 .084 .036 .164
rdb1250l 1250 3025 1152 1.102 .006 .239 .331 .507
rdb200 200 460 162 1.038 .03 .399 .988 .991
rdb450 450 1065 392 1.006 .019 .391 .977 .986
rdb200l 200 460 162 1.044 .03 .407 .988 .992
rdb800l 800 1920 722 1.012 .005 .135 .527 .698
dw8192 8184 17371 12149 1.849 0. .008 .02 .041
rdb2048 2048 4992 1922 1.122 .004 .173 .232 .379
rdb2048l 2048 4992 1922 1.082 .003 .168 .232 .378
cry10000 3699 7164 0 2.084 .002 .192 .178 .256
rdb3200l 3200 7840 3067 1.117 .003 .164 .173 .295
bcspwr07 1612 2106 699 1.135 .002 .174 .024 .205
bcspwr09 1723 2394 2604 1.164 .004 .175 .07 .28
bcspwr10 5296 8260 25770 1.364 0. .027 .004 .071

Table 6.3: Graph Drawing Aesthetic Measures of the final drawings
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6.7 Results: Horizon Drawings (Visual Précis)

Figures 6.70 and 6.89 show two detailed examples of multiple horizons from a hierarchical

compound graph of qh1484 and bcspwr09 drawn as visual précis. For each horizon

the associated space decomposition, to the depth of that horizon, is also shown. These

examples clearly shows how groups of nodes are approximated and hence the implied

edges between these groups are created. The overall structure of the graph drawing is

retained while progressively more abstract views of the data are formed. The visual weight

of the highest level horizons is a small faction of the total number of nodes and edges that

are drawn in the Figures 6.66 and 6.78.

Example three dimensional visual précis extracted from a hierarchical compound graph

of each graph after a wavefront coupled with a number of iterations of FADE3D have been

applied are shown in Figures 4.27, 4.28, 4.29, 4.33, 4.34 and 4.39. The aim here is to assess

whether such abstract representations of structured, semi-structured and clustered graphs

are of sufficient quality to represent the underlying graph drawings.

The number of possible précis that can be extracted from a hierarchical compound

graph is very large. Here we restrict our interest to the horizon level précis and the drawings

of the underlying graphs.

Table 6.4 shows the results of applying a range of graph drawing aesthetic measures to

each horizon level of the hierarchical compound graph. These measures are averaged over

100 FADE2D drawings of each graph. The number of clusters , implied edges , nodes

and edges is shown for each level, including the lowest level (that is, the entire graph).
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Table 6.4: Graph Drawing Aesthetic Measures of Visual Horizons of Matrix Market Graphs

Graph Name H
or
iz
on
Le
ve
l(

)
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s(
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(
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sin
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d
/A
vg
Ed
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(
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Ed
ge
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Ed
ge
(

)

M
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Ed
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/A
vg
Ed
ge
(

)

1138bus 2 4 5 0 0 .3 0 1.182 .776 .802 .598 .802

3 16 28 0 0 1.7 1 1.094 .155 .488 .345 .488

4 55 105 0 0 6.2 8 1.052 .047 .331 .17 .331

5 170 346 7 0 20.1 64 1.08 .023 .32 .108 .321

6 359 738 186 52 51.4 223 1.08 .01 .23 .066 .303

7 87 169 961 1088 88.8 550 1.077 .005 .168 .029 .168

8 4 11 1130 1441 99.6 754 1.077 .004 .118 .029 .171

9 0 0 1138 1458 100. 756 1.077 .002 .063 .01 .063

dw2048 2 4 5 0 0 .1 0 1.992 .476 .637 .476 .637

3 8 9 0 0 .3 0 2.256 .238 .734 .56 .734

4 23 45 0 0 1.1 1 1.93 .073 .417 .269 .417

5 68 161 1 0 3.7 8 1.735 .033 .362 .235 .362

6 214 587 9 0 13.2 37 1.662 .014 .294 .19 .396

7 557 1559 229 158 40.8 177 1.696 .007 .304 .097 .305

8 265 929 1304 2022 73.6 983 1.719 .001 .066 .077 .263

9 146 603 1686 3030 89. 2195 1.719 .001 .051 .103 .335

10 70 269 1900 3637 95.7 3275 1.719 .001 .031 .095 .309

11 16 85 2016 3970 99.1 4034 1.719 0. .013 .105 .34

12 2 15 2044 4079 100. 4207 1.719 0. .013 .105 .34

qh1484 2 4 5 0 0 .2 0 1.144 .634 .697 .477 .697

3 14 22 0 0 .9 1 1.006 .205 .67 .43 .67

4 47 86 0 0 3.3 5 1.024 .07 .493 .308 .493

5 142 280 6 1 10.8 60 1.044 .01 .15 .064 .15

6 363 781 67 16 30.8 124 1.029 .01 .261 .076 .261

7 353 907 730 663 66.7 536 1.024 .005 .196 .027 .196

8 33 143 1417 2264 97. 1128 1.029 .002 .101 .028 .219

9 0 0 1482 2488 100. 1186 1.029 .002 .068 .028 .221

sherman4 2 4 1 0 0 .2 0 1.38 .346 1. .908 .908

3 16 4 0 0 .8 0 1.026 .075 .297 .155 .297

4 59 9 2 0 2.7 1 1.054 .035 .373 .217 .373

5 146 16 48 0 8.2 1 1.008 .017 .338 .248 .46

6 109 26 261 1 15.4 1 1.002 .007 .254 .206 .46

7 56 36 419 15 20.5 1 1.004 .001 .049 .016 .049

8 173 511 541 86 51. 87 1.004 .001 .174 .017 .174

9 94 384 909 728 82.2 495 1.004 0. .173 .013 .191

continued on next page
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Table 6.4: continued

Graph

10 0 0 1104 1468 100. 1040 1.004 0. .127 .008 .127

plat1919 2 4 6 0 0 .1 1 1.585 .464 .663 .393 .663

3 12 24 0 0 .2 4 1.281 .112 .397 .241 .397

4 28 65 1 0 .5 10 1.487 .07 .498 .325 .498

5 86 251 4 0 2. 49 1.455 .027 .377 .353 .506

6 281 1151 15 1 8.4 861 1.478 .016 .375 .173 .375

7 587 4180 377 617 33.6 11450 1.471 .002 .057 .023 .063

8 252 2886 1397 8216 74.3 49949 1.463 .001 .052 .017 .052

9 44 826 1831 13846 96.4 88356 1.466 .001 .026 .008 .026

10 12 253 1895 14848 99.1 95641 1.466 .001 .026 .008 .026

11 0 0 1919 15240 100. 98153 1.466 0. .019 .006 .019

dw8192 2 4 5 0 0 0. 0 2.055 .455 .613 .409 .613

3 12 22 0 0 .1 1 1.564 .158 .593 .354 .593

4 34 73 1 0 .4 3 1.721 .07 .518 .33 .518

5 107 265 2 0 1.5 8 1.809 .019 .274 .179 .274

6 378 1015 9 0 5.5 32 1.867 .015 .418 .274 .418

7 1401 3915 56 8 21. 241 1.842 .007 .381 .188 .381

8 2454 7279 2148 2317 55.5 1804 1.852 0. .043 .045 .111

9 1329 4769 5442 8619 78.8 5113 1.849 0. .014 .06 .122

10 598 2846 6986 12832 90.9 8617 1.849 0. .014 .059 .122

11 193 1099 7806 15755 97.1 10978 1.849 0. .014 .02 .041

12 4 31 8184 17371 100. 12149 1.849 0. .008 .02 .041

bcspwr09 2 4 4 0 0 .2 0 1.122 .754 .914 .747 .914

3 14 22 0 0 .9 0 1.005 .153 .49 .295 .49

4 42 85 2 0 3.1 5 1.061 .043 .301 .275 .46

5 123 252 12 0 9.4 17 1.18 .016 .239 .128 .239

6 322 731 86 9 27.9 77 1.168 .008 .237 .152 .38

7 460 1161 587 351 62.2 581 1.166 .005 .194 .112 .433

8 135 422 1449 1652 88.9 1589 1.166 .004 .187 .07 .279

9 0 0 1723 2394 100. 2604 1.164 .004 .175 .07 .28

bcspwr10 2 4 3 0 0 .1 0 2.063 .336 .709 .616 .709

3 10 12 1 0 .2 0 1.385 .125 .551 .422 .619

4 23 42 1 0 .5 6 1.382 .04 .298 .131 .298

5 62 137 2 0 1.5 27 1.406 .016 .233 .083 .233

6 176 465 9 0 4.8 155 1.389 .011 .274 .063 .306

7 495 1567 72 12 15.8 1245 1.362 .004 .151 .019 .151

8 1055 3554 519 239 39.5 5095 1.369 .001 .056 .012 .143

9 1213 4024 2072 1739 66.7 10592 1.362 .001 .066 .006 .093

10 586 2182 4053 5022 87.3 17248 1.363 0. .042 .004 .068

11 67 293 5165 7885 98.8 24978 1.364 .001 .053 .004 .07

12 2 11 5296 8260 100. 25770 1.364 0. .027 .004 .071
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Figure 6.66: Plain qh1484 graph view Figure 6.67: View of qh1484 with quadtree

Figure 6.68: Visual Précis of a 5th Level
Horizon of qh1484

Figure 6.69: Visual Précis of a 5th Level Horizon
of qh1484 with quadtree

Figure 6.70: Visual Précis of a 4th Level
Horizon of qh1484

Figure 6.71: Visual Précis of a 4th Level Horizon
of qh1484 with quadtree
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Figure 6.72: Visual Précis of a 3rd Level
Horizon of qh1484

Figure 6.73: Visual Précis of a 3rd Level Horizon
of qh1484 with quadtree

Figure 6.74: Visual Précis of a 2nd Level
Horizon of qh1484

Figure 6.75: Visual Précis of a 2nd Level Hori-
zon of qh1484 with quadtree

Figure 6.76: Visual Précis of a 1st Level
Horizon of qh1484

Figure 6.77: Visual Précis of a 1st Level Horizon
of qh1484 with quadtree
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Figure 6.78: Plain bcspwr09 graph view Figure 6.79: View of bcspwr09 with quadtree

Figure 6.80: Visual Précis of a 5th Level
Horizon of bcspwr09

Figure 6.81: Visual Précis of a 5th Level
Horizon of bcspwr09 with quadtree

Figure 6.82: Visual Précis of a 4th Level
Horizon of bcspwr09

Figure 6.83: Visual Précis of a 4th Level
Horizon of bcspwr09 with quadtree
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Figure 6.84: Visual Précis of a 3rd Level
Horizon of bcspwr09

Figure 6.85: Visual Précis of a 3rd Level
Horizon of bcspwr09 with quadtree

Figure 6.86: Visual Précis of a 2nd Level
Horizon of bcspwr09

Figure 6.87: Visual Précis of a 2nd Level
Horizon of bcspwr09 with quadtree

Figure 6.88: Visual Précis of a 1st Level
Horizon of bcspwr09

Figure 6.89: Visual Précis of a 1st Level
Horizon of bcspwr09 with quadtree
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6.7.1 Discussion

The quality of these horizon drawings are measured using a variety graph drawing aesthetic

measures. These abstract representations should also adhere to the multilevel aesthetic

measures as described in Section 2.2.2 and previously discussed in Section 5.6.1.

These results indicate that the visual abstractions used in the FADE paradigm greatly

reduce the number of edge crossings. However it is also visually apparent in some visual

précis that due to the nature of the regular structured graph data in this case study, the two

dimensional précis consist of pseudonodes with many non-adjacent nodes. The result of

the micro relational structures being elided in such drawings, is that the overall regular

structure of the drawing is not apparent in the visual précis.

Some remarks are in order.

For clustered data, the higher level précis do contain the natural clusters of the graphs

which are well displayed by the visualization.

The use of a post-processing algorithm, such as an inertial bisection method [212],

to determine the principal axis of inertia may improve the regularity of the decom-

position and hence the visual précis formed.

The three dimensional visual précis display an approximate superstructure or back-

bone for the graph drawing.

The visual weight of high level visual précis from the hierarchical compound graphs

produced by both FADE2D and FADE3D, are a small fraction of the number of nodes

of edges in the underlying drawing.

We can deduce a clear guideline for graph drawing systems using the FADE paradigm:

the use of two dimensional regular space decomposition, for the creation of a hierarchical

compound graph, can produce visual précis that do not display any regular repeating struc-

tures found in the underlying drawings. However, for graphs with clustered regions, the

visual précis formed do provide a good approximation to the overall structure of the layout.
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6.8 Results: Time and Error Performance

Here we present the results of a performance and error analysis of the FADE2D algorithm

with a - cell opening criterion and varying values of on the range matrices in this

case study.

Figure 6.90 to Figure 6.93 compare the percentage of approximate force calculations

to direct calculations, for a range of values, against the error in the force calculation. The

following two measures appear in each chart:

The percentage of approximate to direct calculations for FADE2D is shown as the

purple line .

The approximate as compared with the direct node-to-node nonedge force calcula-

tion is shown as the blue line . These results are averaged in two ways. First the

error, for a given , is averaged over a sampling of the application of FADE2D from

the first 400 runs. Second, the initial layout is randomized 100 times and the above

average is computed again for each initial layout. The average across these 100 runs

is the value shown.

Figure 6.94 to Figure 6.99 show charts of the performance versus error tables, for some

of the graphs in this case study. Further charts are shown in Appendix B.

As in the case study in Chapter 5, the following three measures appear in each chart:

The time per iteration of FADE2D is shown as the blue line .

The nonedge error as compared with the direct node-to-node nonedge force calcula-

tion is shown as the orange line . These results are averaged in two ways. First the

error, for a given , is averaged over a sampling of the application of FADE2D from

the first 400 runs. Second, the initial layout is randomized 100 times and the above

average is computed again for each initial layout. The average across these 100 runs

is the value shown.

The brown line corresponds to the averaged error for the first 400 iterations of

FADE2D.
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Figure 6.90: Percentage of Force Calculation
versus Error of FADE2D for 1138bus

Figure 6.91: Percentage of Force Calculation
versus Error of FADE2D for dwg961a

Figure 6.92: Percentage of Force Calculation
versus Error of FADE2D for bfw398a

Figure 6.93: Percentage of Force Calculation
versus Error of FADE2D for bfw782a
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Figure 6.94: Performance versus
Error of FADE2D for dw2048
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Figure 6.95: Performance versus Error of
FADE2D for rdb450
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Figure 6.96: Performance versus
Error of FADE2D for dwa512

0.05 0.3 0.55 0.8 1.05 1.3 1.55 1.8 2.05 2.3 2.55
Value of forMin d-criteria in FADE2D

0.0015

.385

.77

1.12

1.54

1.93

2.32

2.70

3.08

3.47

3.85
Ti
m
e
(p

er
se

c)
pe
ri
te
ra
tio
n
of
FA
D
E2
D

0

8.8

17

26

35

44

53

61

70

79

88

Pe
rc
en
ta
ge
er
ro
ri
n
fo
rc
e
ca
lc
ul
at
io
n
of
FA
D
E
2D

Figure 6.97: Performance versus Error of
FADE2D for 1138bus
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Figure 6.98: Performance versus
Error of FADE2D for bfw398b
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Figure 6.99: Performance versus Error of
FADE2D for qh1484
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6.8.1 Discussion

As in the previous case study the performance of FADE2D improves as the value for

decreases. And the error in the force calculation increases as increases. These values are

in line with the predicted values from particle simulation work. Again these results indicate

that FADE is not suitable for small graphs. As in the previous case study the results indicate

that a value of in the range - is permissible given that the edge forces dampen these

nonedge force errors.

The regular graphs in this case study are drawn approximately uniformly distributed at

each step in the progressive cycle, as such the performance of FADE2D in the initial and

averaged runs are approximately equal.

6.9 Results: Clustering Measures

Here we present the results of applying the hierarchical compound graph quality measures,

introduced in Section 3.5, to the layouts produced across the first 300 iterations of the

FADE2D algorithm. Here we use the - cell opening criterion and a value of .

Figure 6.100 to Figure 6.111 show charts of the normalized clustering measures versus

crossings, the remaining charts are shown in Appendix B.

As in the previous case study these results are averaged over sets of runs of the

FADE2D algorithm. In each case, the graph is given an initial random layout.

The values of hierarchical compound graph quality measures are indicated as nor-

malised values according to the right hand axis. Each measure is colour coded as follows:

The Implied Edge Precision ( ) measure is drawn with an orange line.

The Lowest Common Ancestor ( ) measure is drawn with an blue line.

The Coupling and Cohesion ( ) measure is drawn with an red line.

The Node Neighbourhood Similarity ( ) measure is drawn with a brown line.

The number of edge crossing in the layout is indicated on the left hand axis and is drawn

as a green line in each chart.
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Figure 6.100: HCGQM versus Crossings
for bcspwr09
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Figure 6.101: HCGQM versus Crossings
for bcspwr07
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Figure 6.102: HCGQM versus Crossings
for rdb968
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Figure 6.103: HCGQM versus Crossings
for sherman4
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Figure 6.104: HCGQM versus Crossings
for nos7
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Figure 6.105: HCGQM versus Crossings
for dw2048
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Figure 6.106: HCGQM versus Crossings
for qh1484
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Figure 6.107: HCGQM versus Crossings
forplsk1919
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Figure 6.108: HCGQM versus Crossings
for bfw398b
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Figure 6.109: HCGQM versus Crossings
for bfw782a
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Figure 6.110: HCGQM versus Crossings
for olm1000
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Figure 6.111: HCGQM versus Crossings
for qh768
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6.9.1 Discussion

The hierarchical compound graph quality measures have been applied during the first 300

iterations of FADE2D in the progressive cycle. In this discussion our aim is to evaluate,

in general terms, the usefulness of our hierarchical compound graph quality measures for

these graphs, when much of the data contains little or no clustering, in the traditional sense.

Each chart also shows that the number of edge crossings in the layout steadily decreases as

the progressive cycle iterates.

Much of this data is structured and semi-structured, with similar cohesion and cou-

pling, our classical geometric Coupling and Cohesion measure ( ) provides a good

indication as to relative amount of clustering that is visually apparent. The results of the

measure in this case study, are in stark contrast to the results in the software visu-

alization case study. Here the underlying data often contains no structural clusters and as

such exhibits low values for the measure.

The often provides a better indication as to the progress of the progressive cycle.

Here the measure is often a good indicator as the relative stability of the hierarchical

compound graph and its suitability for rendering as visual précis.

The measure is difficult to interpret. It should provide an indication as to the

clustering depth of each edge in the hierarchical compound graph, that is, on average how

far up the tree do edges cause implied edges. As in the previous case study these results

indicate that the does improve as the layout improves but that the measure itself is on

an ordinal scale due to the poor normalization.

For several of the structured graphs the provides a measure for how strongly

interconnected nodes are within an area.

Overall, the measures steady increase to a plateau which supports our hypothesis that

as the quality of the drawing improves (as measured by edge crossings here), the quality of

the clustering exhibited by the layout also improves. Some of these measures are absolute,

others are ordinal due to the poor normalization used.
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6.10 Remarks

This chapter has presented a matrix market visualization case study using the FADE paradigm

for large graph drawing. These results indicate that the FADE paradigm is very suitable for

drawing large graphs from these application domains. The use of three dimensional visual

précis is also quite promising and the tends to indicate highly accurate hierarchical

compound graphs are created by the geometric clustering method used in FADE.

The progressive cycle proceeds by making small iterative changes to the layout of the

graph which improves the values of the hierarchical compound graph quality measures.

Drawings of such layouts tend to exhibit patterns in the edge strengths, natural clusterings,

macro and repeating micro-structures, and overall symmetries in the graph.

Overall, we have demonstrated the suitability of the FADE paradigm in providing fast

layouts of these graphs coupled with accurate abstract representations.



C H A P T E R 7

Conclusions and Future Work

“In the final analysis, a drawing simply is no longer a drawing, no matter how

self-sufficient its execution may be. It is a symbol, and the more profoundly the

imaginary lines of projection meet higher dimensions, the better.” - Paul Klee

7.1 Conclusions

We began by identifying four related problems which are inherent when dealing with the

visualization of large graphs: time to compute a layout, the use of screen space, the cogni-

tive load on the user, and the time to render the picture. We introduced and evaluated the

hierarchical compound graph model and the FADE visualization paradigm. The model itself

is both a geometric representation of a graph layout coupled with a hierarchical geometric

clustering of the nodes of the graph. FADE marries rapid graph drawing, geometric clus-

tering, visual abstraction and measurement using a single graph model. This visualization

paradigm supports the needs inherent in large scale relational information visualization.

The use of this model helps to address the time taken to compute a high quality layout

of the graph. Part of the hierarchical compound graph model consists of an inclusion

tree of the nodes of the graph. This inclusion tree is used by force directed algorithms

to approximate the nonedge forces, which results in a more efficient layout algorithm.

In general, the performance improvement of the layout algorithms in the FADE paradigm

comes from computing nonedge forces using a recursive approximation of groups of nodes,

rather than all the node-to-node nonedge forces directly. The time performance versus the
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error in the force computation of these algorithms are evaluated in our case studies.

It was noted how this model allows us to make more effective use of screen space.

Extracted from this model are précis which we render as visual précis in two and three

dimensions. High level précis form very approximate views of the underlying graph but

generally have a visual weight which is a small fraction of the underlying graph drawing.

This approach allows for the drawing of abstract representations with good resolution. For

high level views, the nodes and edges of the visual précis can be clearly identified in the

drawing. The aesthetics of the drawings and a range of visual précis generated from the

FADE paradigm are evaluated in our case studies.

By reducing the size of the graph and drawing more abstract views on screen we have

reduced the direct cognitive load on the user. If the précis accurately reflects the structures

and connectivity in the underlying graph then the cost in comprehending this abstract rep-

resentation is minimized. Example drawings along with the visual weights of a range of

visual précis are presented in our case studies.

The smaller visual précis, which can represent many thousands of nodes and edges are

also computationally inexpensive to render in two and three dimensions. Other forms of

visual précis, which show the local and global neighbourhoods of a node or set of nodes

were also introduced.

We have married the hierarchical compound graph with the methods introduced to ad-

dress the four problems of; computation, screen space, cognitive load, and rendering. Each

of these issues have associated hard measures that we evaluate against application domains

in our case studies. Our general conclusion is that large scale relational visualization is

both feasible and practical.

7.2 Future Work

There are still many challenges in large scale relational information visualization. The

work in this thesis suggests several future research directions of both theoretical and prac-

tical significance.

FADE currently is suitable for the visualization of simple undirected graphs with
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singularly attributed nodes and edges. It may be possible to extend this work to more

complex graphs model, in particular, it may be possible to visualize directed graphs,

where the direction of flow within the graph or precedence relationships in the graph

are important. Further, it may be possible to handle more highly attributed graphs

with the use of more long range forces or short range forces for edge-to-edge and

node-to-node interactions, within the FADE paradigm.

The FADE paradigm uses regular space decompositions in creating the hierarchical

compound graphs. Other methods which generate regular and non-regular inclu-

sion trees of the nodes of the graph, can be integrated into the FADE paradigm. To

accommodate this only the formulation of the width of the cell or the introduction

of new cell opening criterion is required, such as those outlined in Chapter 4. Re-

search based on the FADE paradigm, with recursive Voronoi decomposition of space

is currently underway [228].

The layout algorithms in the FADE paradigm can be extended to use multipole ex-

pansion, rather than monopole calculations. The Fast Multipole Method uses large

pseudo-nodes (high ) and is an elegant refinement to the basic tree code method in

FADE. As in all tree code methods, limiting the error is crucial, whereas in FADE

the errors are dampened by the edge forces. Multipole methods have an asymptotic

complexity of . Integrating such methods along with non-regular space decom-

positions may improve both the performance in the force calculation and the quality

of the hierarchical compound graphs generated.

The reduction in cognitive load in using visual précis to abstractly represent large

graph drawings has the cost of removing detail. The use of visual précis and the

FADE paradigm in any application requires a formal HCI study. This study should

measure both the appropriateness and effectiveness of this paradigm, in accurately

representing and abstracting large amounts of relational information.

Although the FADE paradigm currently deals with the visualization of static data, the

underlying hierarchical compound graph model is suitable for dynamic graph envi-
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ronments. Streaming data, such as network traffic, might be visualized with a modi-

fied FADE paradigm which accommodates nodes being added, deleted, or collapsed

along with edge creation and deletion. The high level visual précis may likewise be

suitable in such environments, where micro changes to the underlying data are not

as important as the overall change to the graph structure and node distribution.

A comparative study, in terms of computational speed, iterations required, and the

quality of the drawings produced by the layout methods presented in this thesis along

with those in [98], [115],and [283] should prove useful. Currently the method de-

scribed in [115] does not have a publicly available implementation.

As part of Koschke’s research [163], a manual analysis of the resource flow graphs

used in Chapter 5 was undertaken. The result of this analysis produced a set of refer-

ence atomic components, that are used in the comparison of different automatic and

semi-automatic component identification techniques. Integrating this result data into

a visualization of the graphs allows us to compare the natural clusters identified with

the actual human identified software components in the system. An investigation of

correlations here would be useful.

On a more practical note, as noted in Section 3.11 the visual précis offered by the

hierarchical compound graph model need to be integrated into an interactive visual-

ization environment, if they are to be of practical use. Animation, morphing, fading

or other suitable visualization techniques can be used to allow a user to move be-

tween visual précis. With appropriate visualization, actions such as moving between

horizon layers, viewing sets of nodes with cut views, or digging down into sections

of the hierarchical compound graph can be supported. Further, integrating multiple

views of the graph with surface views may allow users to navigate and explore large

graphs in new ways.
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ing, GD, edited by J. Kratochvíl, Vol. 1731 of Lecture Notes in Computer Science,

LNCS, Springer-Verlag, 15–19 Sep. 1999, pp. 392–399.

[123] Herman, I., “Skeletal images as visual cues in graph visualization,” Proceedings of

the Joint Eurographics - IEEE TCCG Symposium on Visualization, edited by H. L.
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A P P E N D I X A

Visualizations, Animations, and Models on

CD-ROM

It is difficult to accurately show a three dimensional graph drawing on paper since, as it

has been noted, rotating a three dimensional graph layout is akin to turning and manip-

ulating an unfamiliar object in ones hands [214, 92, 292] to learn more about it. The

CD-ROM accompanying this thesis contains several directories with images of two dimen-

sional drawings, images of three dimensional drawings, video of two dimensional drawings

during the progressive cycle, video of three dimensional drawings, and three dimensional

models.

In terms of visualization, animation, and models the directories on the CD-ROM

include:

Case Study I: Software Visualization

CASE1/GALLERY ...... Entire Case Study I Picture Gallery

CASE1/2D-VIS ....... Extra FADE2D Software Visualizations

CASE1/3D-VIS ....... Extra FADE3D Software Visualizations

CASE1/2D-VIDEO ..... Video of FADE2D Software Visualizations

CASE1/3D-VIDEO ..... Video of FADE3D Software Visualizations

CASE1/3D-MODELS .... Software Visualization, VRML models



Visualizations, Animations, and Models on CD-ROM A-2

CASE1/DATA ......... Raw View Data

CASE1/MISC ......... Software Visualization Miscellaneous

Case Study II: Matrix Market Visualizations

CASE2/GALLERY ...... Entire Case Study II Picture Gallery

CASE2/2D-VIS ....... FADE2D Matrix Market Visualizations

CASE2/3D-VIS ....... FADE3D Matrix Market Visualizations

CASE2/2D-VIDEO ..... Video of FADE2D Matrix Market drawings

CASE2/3D-VIDEO ..... Video of FADE3D Matrix Market drawings

CASE2/3D-MODELS .... Matrix Market, VRML models

CASE2/DATA ......... Raw Matrix Data

CASE2/MISC ......... Matrix Market Miscellaneous

Thesis Images & Video

THESIS/IMAGES ...... Images Used in Thesis

THESIS/VIDEO ....... Video Based on Images in Thesis

General Visualizations

GENERAL/IMAGES ..... General non-case study drawings

GENERAL/VIDEO ...... General Video Clips

GENERAL/MODELS ..... General Data Models

GENERAL/DATA ....... General Raw Data



A P P E N D I X B

Results of Measures on CD-ROM

The CD-ROM accompanying thesis contains several directories with all the results from

the two case studies.

In terms of results, the directories on the CD-ROM include:

Case Study I: Software Visualization

CASE1/RESULTS/VPAR .... Case Study I Visual Précis Aesthetic Results

CASE1/RESULTS/PERF .... Case Study I Performance Versus Error Results

CASE1/RESULTS/HCQM .... Case Study I Quality Measure Results

Case Study II: Matrix Market Visualizations

CASE2/RESULTS/VPAR .... Case Study II Visual Précis Aesthetic Results

CASE2/RESULTS/PERF .... Case Study II Performance Versus Error Results

CASE2/RESULTS/HCQM .... Case Study II Quality Measure Results


